Spaces:
Runtime error
Runtime error
File size: 36,008 Bytes
3424266 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 |
# Copyright 2024 EPFL and Apple Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import math
import random
from typing import Dict, List, Optional, Tuple, Union
import numpy as np
import torch
import torch.nn.functional as F
from einops import rearrange
from tokenizers import Tokenizer
from torch.distributions import Dirichlet
from fourm.data.modality_transforms import get_transform_key
from fourm.utils import to_2tuple
from fourm.utils.tokenizer import get_sentinel_to_id_mapping
def sample_cosine(min_val: float = 0, max_val: float =1) -> float:
"""Sample a value from a cosine distribution between min_val and max_val
Args:
min_val: Minimum value
max_val: Maximum value
Returns:
Sampled value
"""
return min_val + 0.5 * (max_val - min_val) * (1 + math.cos(math.pi * random.uniform(0, 1)))
def sample_uniform(min_val: float = 0, max_val: float =1) -> float:
"""Sample a value from a uniform distribution between min_val and max_val
Args:
min_val: Minimum value
max_val: Maximum value
Returns:
Sampled value
"""
return random.uniform(min_val, max_val)
def simple_span_masking(sequence: List[int], sentinel_to_id: Dict[int, int], keep_prob: float) -> Tuple[List[int], List[int]]:
"""Span masking for a sequence
Args:
sequence: Sequence to mask
sentinel_to_id: Mapping from sentinel to id
keep_prob: Probability of keeping a token
Returns:
Masked input sequence and masked target sequence
"""
sequence_length = len(sequence)
# 0 for keep, 1 for mask
masks = torch.where(torch.rand(sequence_length) <= keep_prob, 0, 1).bool().tolist()
input_sequence = []
target_sequence = []
prev_mask = False
sentinel_count = 0
for token, mask in zip(sequence, masks):
if mask:
if not prev_mask:
sentinel_count += 1
input_sequence.append(sentinel_to_id[sentinel_count])
target_sequence.append(sentinel_to_id[sentinel_count])
prev_mask = True
target_sequence.append(token)
else:
prev_mask = False
input_sequence.append(token)
target_sequence.append(sentinel_to_id[sentinel_count + 1])
return input_sequence, target_sequence
def chunk_span_masking(sequence_chunks: List[List[int]], sentinel_to_id: Dict[int, int], keep_prob: float) -> Tuple[List[int], List[int]]:
"""Span masking where masking is performed at the chunk level.
Args:
sequence_chunks: Sequence chunks to mask
sentinel_to_id: Mapping from sentinel to id
keep_prob: Probability of keeping a token
Returns:
Masked input sequence and masked target sequence
"""
chunk_length = len(sequence_chunks)
# 0 for keep, 1 for mask
masks = torch.where(torch.rand(chunk_length) <= keep_prob, 0, 1).bool().tolist()
input_sequence = []
target_sequence = []
prev_mask = False
sentinel_count = 0
for chunk, mask in zip(sequence_chunks, masks):
if mask:
if not prev_mask:
sentinel_count += 1
input_sequence.append(sentinel_to_id[sentinel_count])
target_sequence.append(sentinel_to_id[sentinel_count])
prev_mask = True
target_sequence.extend(chunk)
else:
prev_mask = False
input_sequence.extend(chunk)
target_sequence.append(sentinel_to_id[sentinel_count + 1])
return input_sequence, target_sequence
class UnifiedMasking(object):
def __init__(self,
modality_info: Dict,
text_tokenizer: Optional[Tokenizer],
input_tokens_range: Union[int, Tuple[int, int]],
target_tokens_range: Optional[Union[int, Tuple[int, int]]],
max_tries: int = 100,
sampling_weights: Optional[List[float]] = None,):
"""Performs masking on a dict of modalities (both image based and sequence based modalities)
Args:
modality_info: Dict with the modalities and their corresponding information
text_tokenizer: Tokenizer to use for text modalities
input_tokens_range: Range of number of tokens to mask in the input
target_tokens_range: Range of number of tokens to mask in the target
max_tries: Maximum number of tries to find a valid token budgets
sampling_weights: Sampling weights for the mixture of Dirichlet distributions
"""
self.input_tokens_range = to_2tuple(input_tokens_range)
self.target_tokens_range = to_2tuple(target_tokens_range) if target_tokens_range is not None else None
self.modality_info = modality_info
self.num_modalities = len(modality_info)
self.max_tries = max_tries
self.min_tokens = torch.tensor([mod['min_tokens'] for mod in modality_info.values()])
self.max_tokens = torch.tensor([mod['max_tokens'] for mod in modality_info.values()])
self.mod_is_img = torch.tensor([mod['type'] == 'img' for mod in modality_info.values()])
# Dirichlet sampling (supports a mixture of multiple Dirichlet distributions)
eps = 1e-9
input_alphas = torch.tensor([mod["input_alphas"] for mod in modality_info.values()])
input_alphas = rearrange(input_alphas, "nmod nmix -> nmix nmod")
self.input_dirichlets = [Dirichlet(torch.clamp(input_alpha, min=eps)) for input_alpha in input_alphas]
target_alphas = torch.tensor([mod["target_alphas"] for mod in modality_info.values()])
target_alphas = rearrange(target_alphas, "nmod nmix -> nmix nmod")
self.target_dirichlets = [Dirichlet(torch.clamp(target_alpha, min=eps)) for target_alpha in target_alphas]
assert(len(self.input_dirichlets) == len(self.target_dirichlets))
self.num_dirichlets = len(self.input_dirichlets)
if sampling_weights is not None:
assert len(sampling_weights) == self.num_dirichlets
self.sampling_weights = torch.tensor(sampling_weights)
else:
self.sampling_weights = None
self.text_tokenizer = text_tokenizer
self.keep_prob_decay_factor = 0.9
self.sentinel_to_id = get_sentinel_to_id_mapping(text_tokenizer)
self.sentinel_ids = set(self.sentinel_to_id.values())
self.pad_id = text_tokenizer.token_to_id("[PAD]")
self.eos_id = text_tokenizer.token_to_id("[EOS]")
def input_token_budget(self, num_input_tokens, dir_idx=0):
"""Sample a token budget for the input
Args:
num_input_tokens: Number of tokens in the input
Returns:
Token budget for the input
"""
# Get the number of tokens for each modality
for i in range(self.max_tries):
input_token_budget = (self.input_dirichlets[dir_idx].sample() * num_input_tokens).floor().int()
diff = num_input_tokens - input_token_budget.sum()
# Adds the remaining tokens by sampling from the Dirichlet and taking the argmax
# This avoids adding tokens to modalities that shouldn't be sampled (i.e. with alphas ~=0)
input_token_budget += torch.bincount(self.input_dirichlets[dir_idx].sample_n(diff).argmax(dim=-1), minlength=len(input_token_budget))
# If token budget is over max tokens for a given modality, set it to max
input_token_budget = torch.clamp(input_token_budget, max=self.max_tokens)
if (input_token_budget >= self.min_tokens).all():
return input_token_budget.tolist()
print(f"More than max tries for input!")
return input_token_budget.tolist()
def target_token_budget(self, input_token_budget, num_target_tokens, dir_idx=0):
"""Sample a token budget for the target
Args:
input_token_budget: Token budget for the input
num_target_tokens: Number of tokens in the target
Returns:
Token budget for the target
"""
# We don't reduce the number of tokens for sequence based tasks
max_tokens_remaining = torch.where(self.mod_is_img, self.max_tokens - torch.tensor(input_token_budget), self.max_tokens)
max_tokens_remaining = torch.max(self.min_tokens, max_tokens_remaining)
for i in range(self.max_tries):
target_token_budget = (self.target_dirichlets[dir_idx].sample() * num_target_tokens).floor().int()
diff = num_target_tokens - target_token_budget.sum()
# Adds the remaining tokens by sampling from the Dirichlet and taking the argmax
# This avoids adding tokens to modalities that shouldn't be sampled (i.e. with alphas ~=0)
target_token_budget += torch.bincount(self.target_dirichlets[dir_idx].sample_n(diff).argmax(dim=-1), minlength=len(target_token_budget))
# If token budget is over max tokens for a given modality, set it to max
target_token_budget = torch.clamp(target_token_budget, max=max_tokens_remaining)
if (target_token_budget >= self.min_tokens).all():
return target_token_budget.tolist()
print(f"More than max tries for target!")
return target_token_budget.tolist()
def image_mask(self, tensor: torch.Tensor, num_tokens: int, input_budget: int, target_budget: int):
"""Applies input and target masking to an image tensor
Args:
tensor: Image tensor
num_tokens: Number of tokens in the tensor
input_budget: Token budget for the input
target_budget: Token budget for the target
Returns:
Dictionary containing the masked image tensor, the input mask, the target mask, and the decoder attention mask
"""
noise = torch.rand(num_tokens)
ids_shuffle = torch.argsort(noise, dim=0)
input_mask = torch.ones(num_tokens, dtype=torch.bool)
input_mask[:input_budget] = 0
input_mask = torch.gather(input_mask, dim=0, index=ids_shuffle)
if target_budget is None:
target_mask = ~input_mask
else:
target_mask = torch.ones(num_tokens, dtype=torch.bool)
target_mask[input_budget:input_budget + target_budget] = 0
target_mask = torch.gather(target_mask, dim=0, index=ids_shuffle)
decoder_attention_mask = torch.zeros(num_tokens, dtype=torch.int)
first_mask_token = torch.argmin(target_mask + torch.arange(target_mask.shape[0], device=target_mask.device) * 1e-6)
decoder_attention_mask[first_mask_token] = (~target_mask).sum() # Equiv. to target budget
return {"tensor": tensor, "input_mask": input_mask, "target_mask": target_mask, "decoder_attention_mask": decoder_attention_mask}
def sequence_token_mask(self, sequence_ids: str, max_tokens: int, input_budget: int, target_budget: int, keep_scheme: str, vocab_offset: int):
"""Applies input and target masking to a sequence of tokens (e.g. DINOv2 global tokens)
The keep probability is sampled from a cosine schedule and does not depend on the number of tokens in the sequence.
If the keep probability results in a sequence that is too long, then it is lowered until the sequence is short enough.
Args:
sequence_ids: Sequence ids
max_tokens: Maximum number of tokens in the sequence
input_budget: Token budget for the input
target_budget: Token budget for the target
keep_scheme: Scheme for sampling the keep probability
vocab_offset: Offset to avoid overlap with sentinel tokens
Returns:
Dictionary containing the masked sequence tensor, the input mask, the target mask, and the decoder attention mask
"""
seq_ids = sequence_ids
seq_ids = seq_ids + vocab_offset # Avoid overlap with sentinel tokens (needs to be substracted after decoding)
# If input budget is 0, treat it as if the whole sequence is completely masked
if input_budget == 0:
keep_prob = 0.
input_seq_ids = []
_, target_seq_ids = simple_span_masking(seq_ids, self.sentinel_to_id, keep_prob)
else:
if keep_scheme == 'random':
keep_prob = sample_uniform(0, 1)
elif keep_scheme == 'all':
keep_prob = 1.0
elif keep_scheme == 'binary':
keep_prob = random.choice([0., 1.])
else:
raise ValueError(f"Invalid keep scheme for sequence masking: {keep_scheme}")
input_seq_ids, target_seq_ids = simple_span_masking(seq_ids, self.sentinel_to_id, keep_prob)
# Keep lowering the keep_prob while we are over-budget
while len(input_seq_ids) > input_budget:
keep_prob = keep_prob * self.keep_prob_decay_factor
input_seq_ids, target_seq_ids = simple_span_masking(seq_ids, self.sentinel_to_id, keep_prob)
# Span masking can add up to (max_tokens + 1) * 2 tokens for input + target
max_length = (max_tokens + 1) * 2
tensor = torch.ones(max_length, dtype=torch.int) * self.pad_id
input_mask = torch.ones(max_length, dtype=torch.bool)
target_mask = torch.ones(max_length, dtype=torch.bool)
decoder_attention_mask = torch.zeros(max_length, dtype=torch.int)
# Set input and input mask
tensor[:len(input_seq_ids)] = torch.tensor(input_seq_ids, dtype=torch.int)
input_mask[:len(input_seq_ids)] = 0
if target_budget is None or len(target_seq_ids) <= target_budget:
tensor[input_budget:input_budget + len(target_seq_ids)] = torch.tensor(target_seq_ids, dtype=torch.int)
target_mask[input_budget:input_budget + len(target_seq_ids)] = 0
decoder_attention_mask[input_budget:input_budget + len(target_seq_ids)] = 1
else:
# Randomly choose sentinel token.
sentinel_indices = [i for i, token_id in enumerate(target_seq_ids) if token_id in self.sentinel_ids]
# If there is more than 1 sentinel, avoid sampling the very last one which indicates the end of the sequence
chosen_sentinel = np.random.randint(max(1, len(sentinel_indices) - 1))
# If length starting at this token g.t. budget, truncate until budget is reached
if len(target_seq_ids) - sentinel_indices[chosen_sentinel] >= target_budget:
target_seq_ids = target_seq_ids[sentinel_indices[chosen_sentinel]:sentinel_indices[chosen_sentinel] + target_budget]
# Otherwise, select earliest sentinel token such that we don't go over budget
# Note: We could also use the randomly chosen sentinel token, but that would waste budget
else:
for idx in sentinel_indices:
if len(target_seq_ids) - idx <= target_budget:
target_seq_ids = target_seq_ids[idx:]
break
tensor[input_budget:input_budget + len(target_seq_ids)] = torch.tensor(target_seq_ids, dtype=torch.int)
target_mask[input_budget:input_budget + len(target_seq_ids)] = 0
decoder_attention_mask[input_budget:input_budget + len(target_seq_ids)] = 1
return {"tensor": tensor, "input_mask": input_mask, "target_mask": target_mask, "decoder_attention_mask": decoder_attention_mask}
def sequence_mask(self, sequence: Union[str, List[str]], max_tokens: int, input_budget: int, target_budget: int, keep_scheme: str):
"""Applies input and target masking to a sequence
The keep probability is sampled from a cosine schedule and does not depend on the number of tokens in the sequence.
If the keep probability results in a sequence that is too long, then it is lowered until the sequence is short enough.
Args:
sequence: Sequence, can be either a str or list of strings
max_tokens: Maximum number of tokens in the sequence
input_budget: Token budget for the input
target_budget: Token budget for the target
keep_scheme: Scheme for sampling the keep probability
Returns:
Dictionary containing the masked sequence tensor, the input mask, the target mask, and the decoder attention mask
"""
if isinstance(sequence, str):
# Tokenize the sequence and get the ids
seq_ids: List[int] = self.text_tokenizer.encode(sequence).ids
# Add EOS to all sequences
seq_ids.append(self.eos_id)
# Truncate sequence
seq_ids = seq_ids[:max_tokens]
# Use default span masking
span_masking_fn = simple_span_masking
elif isinstance(sequence, list):
# Tokenize the sequence chunks and get the ids
encoded_seq_chunks = self.text_tokenizer.encode_batch(sequence)
seq_ids: List[List[int]] = [seq.ids for seq in encoded_seq_chunks]
# Add EOS as an extra chunk
seq_ids.append([self.eos_id])
# Truncate sequence to keep all chunks below max token length
cumulative_token_count = np.cumsum(np.array([len(chunk) for chunk in seq_ids]))
seq_ids = [chunk for (chunk, token_count) in zip(seq_ids, cumulative_token_count) if token_count <= max_tokens]
# Span mask over chunks
span_masking_fn = chunk_span_masking
else:
raise ValueError(f"Invalid sequence: {sequence}")
# If input budget is 0, treat it as if the whole sequence is completely masked
if input_budget == 0:
keep_prob = 0.
input_seq_ids = []
_, target_seq_ids = span_masking_fn(seq_ids, self.sentinel_to_id, keep_prob)
else:
if keep_scheme == 'random':
keep_prob = sample_uniform(0, 1)
elif keep_scheme == 'all':
keep_prob = 1.0
elif keep_scheme == 'binary':
keep_prob = random.choice([0., 1.])
else:
raise ValueError(f"Invalid keep scheme for sequence masking: {keep_scheme}")
input_seq_ids, target_seq_ids = span_masking_fn(seq_ids, self.sentinel_to_id, keep_prob)
# Keep lowering the keep_prob while we are over-budget
while len(input_seq_ids) > input_budget:
keep_prob = keep_prob * self.keep_prob_decay_factor
input_seq_ids, target_seq_ids = span_masking_fn(seq_ids, self.sentinel_to_id, keep_prob)
# Span masking can add up to (max_tokens + 1) * 2 tokens for input + target
max_length = (max_tokens + 1) * 2
tensor = torch.ones(max_length, dtype=torch.int) * self.pad_id
input_mask = torch.ones(max_length, dtype=torch.bool)
target_mask = torch.ones(max_length, dtype=torch.bool)
decoder_attention_mask = torch.zeros(max_length, dtype=torch.int)
# Set input and input mask
tensor[:len(input_seq_ids)] = torch.tensor(input_seq_ids, dtype=torch.int)
input_mask[:len(input_seq_ids)] = 0
if target_budget is None or len(target_seq_ids) <= target_budget:
tensor[input_budget:input_budget + len(target_seq_ids)] = torch.tensor(target_seq_ids, dtype=torch.int)
target_mask[input_budget:input_budget + len(target_seq_ids)] = 0
decoder_attention_mask[input_budget:input_budget + len(target_seq_ids)] = 1
else:
# Randomly choose sentinel token.
sentinel_indices = [i for i, token_id in enumerate(target_seq_ids) if token_id in self.sentinel_ids]
# If there is more than 1 sentinel, avoid sampling the very last one which indicates the end of the sequence
chosen_sentinel = np.random.randint(max(1, len(sentinel_indices) - 1))
# If length starting at this token g.t. budget, truncate until budget is reached
if len(target_seq_ids) - sentinel_indices[chosen_sentinel] >= target_budget:
target_seq_ids = target_seq_ids[sentinel_indices[chosen_sentinel]:sentinel_indices[chosen_sentinel] + target_budget]
# Otherwise, select earliest sentinel token such that we don't go over budget
# Note: We could also use the randomly chosen sentinel token, but that would waste budget
else:
for idx in sentinel_indices:
if len(target_seq_ids) - idx <= target_budget:
target_seq_ids = target_seq_ids[idx:]
break
tensor[input_budget:input_budget + len(target_seq_ids)] = torch.tensor(target_seq_ids, dtype=torch.int)
target_mask[input_budget:input_budget + len(target_seq_ids)] = 0
decoder_attention_mask[input_budget:input_budget + len(target_seq_ids)] = 1
return {"tensor": tensor, "input_mask": input_mask, "target_mask": target_mask, "decoder_attention_mask": decoder_attention_mask}
def sequence_emb_mask_span(self, emb_tensor: torch.Tensor, max_tokens: int, input_budget: int, target_budget: int, keep_scheme: str):
"""Applies input masking to an sequence embedding tensor, target masking is not supported with sequence embeddings
Args:
emb_tensor: Sequence embedding tensor
max_tokens: Maximum number of tokens in the sequence
input_budget: Token budget for the input
target_budget: Token budget for the target (unused for now)
keep_scheme: Scheme for sampling the keep probability
Returns:
Dictionary containing the masked sequence embedding tensor, the input mask, the target mask, and the decoder attention mask
"""
# Only supported as input modality now
# Make fake seq ids for sequence embeddings to reuse simple_span_masking function
fake_seq_ids = []
emb_dict = {}
id_num = len(self.sentinel_ids)
emb_ind = 0
while(len(fake_seq_ids) < len(emb_tensor)):
if id_num not in self.sentinel_ids: # replace with T5 sentinel_id
fake_seq_ids.append(id_num)
emb_dict[id_num] = emb_tensor[emb_ind, :]
emb_ind += 1
id_num += 1
# Truncate sequence
fake_seq_ids = fake_seq_ids[:max_tokens]
# If input budget is 0, treat it as if the whole sequence is completely masked
if input_budget == 0:
keep_prob = 0.
fake_input_seq_ids = []
_, fake_target_seq_ids = simple_span_masking(fake_seq_ids, self.sentinel_to_id, keep_prob)
else:
if keep_scheme == 'random':
keep_prob = sample_uniform(0, 1)
elif keep_scheme == 'all':
keep_prob = 1.0
elif keep_scheme == 'binary':
keep_prob = random.choice([0., 1.])
else:
raise ValueError(f"Invalid keep scheme for sequence masking: {keep_scheme}")
fake_input_seq_ids, fake_target_seq_ids = simple_span_masking(fake_seq_ids, self.sentinel_to_id, keep_prob)
# Keep lowering the keep_prob while we are over-budget
while len(fake_input_seq_ids) > input_budget:
keep_prob = keep_prob * self.keep_prob_decay_factor
fake_input_seq_ids, fake_target_seq_ids = simple_span_masking(fake_seq_ids, self.sentinel_to_id, keep_prob)
# Span masking can add up to max_tokens tokens for input
max_length = max_tokens
tensor = torch.zeros((max_length, emb_tensor.shape[1]), dtype=torch.float32)
input_mask = torch.ones(max_length, dtype=torch.bool)
target_mask = torch.ones(max_length, dtype=torch.bool)
decoder_attention_mask = torch.zeros(max_length, dtype=torch.int)
# Put tensor values back based on the fake seq ids
for i_, fake_id in enumerate(fake_input_seq_ids):
if fake_id in self.sentinel_ids:
tensor[i_, :] = torch.zeros_like(emb_tensor[0,:]) # TODO replace to learned embeddings later
else:
tensor[i_, :] = emb_dict[fake_id]
# Set input and input mask
input_mask[:len(fake_input_seq_ids)] = 0
return {"tensor": tensor, "input_mask": input_mask, "target_mask": target_mask, "decoder_attention_mask": decoder_attention_mask}
def __call__(self, mod_dict):
"""Applies input and target masking to a dictionary of modalities
Args:
mod_dict: Dictionary of modalities
Returns:
Dictionary containing the masked modalities
"""
if self.sampling_weights is not None:
# Sample masking scheme according to a list of weights
dir_idx = torch.multinomial(self.sampling_weights, 1).item()
else:
# Randomly sample masking scheme
dir_idx = random.randint(0, self.num_dirichlets - 1)
num_input_tokens = random.randint(*self.input_tokens_range)
num_target_tokens = random.randint(*self.target_tokens_range) if self.target_tokens_range is not None else None
input_token_budget = self.input_token_budget(num_input_tokens, dir_idx)
if num_target_tokens is not None:
target_token_budget = self.target_token_budget(input_token_budget, num_target_tokens, dir_idx)
else:
target_token_budget = [None] * self.num_modalities
masked_mod_dict = {}
for (mod_name, mod_info), input_budget, target_budget in zip(self.modality_info.items(), input_token_budget, target_token_budget):
mod_type = mod_info['type']
mod_name_load = mod_name if mod_name in mod_dict else get_transform_key(mod_name)
if mod_type == 'img':
masked_mod_dict[mod_name] = self.image_mask(mod_dict[mod_name_load], mod_info['max_tokens'], input_budget, target_budget)
elif mod_type == 'seq':
keep_scheme = 'random' if ('keep' not in mod_info) else mod_info['keep'][dir_idx]
masked_mod_dict[mod_name] = self.sequence_mask(mod_dict[mod_name_load], mod_info['max_tokens'], input_budget, target_budget, keep_scheme)
elif mod_type == 'seq_token':
keep_scheme = 'random' if ('keep' not in mod_info) else mod_info['keep'][dir_idx]
vocab_offset = mod_info.get('vocab_offset', 0) # Check if any space is allocated to sentinel tokens and other special tokens
masked_mod_dict[mod_name] = self.sequence_token_mask(mod_dict[mod_name_load], mod_info['max_tokens'], input_budget, target_budget, keep_scheme, vocab_offset=vocab_offset)
elif mod_type == "seq_emb":
keep_scheme = 'random' if ('keep' not in mod_info) else mod_info['keep'][dir_idx]
masked_mod_dict[mod_name] = self.sequence_emb_mask_span(mod_dict[mod_name_load], mod_info['max_tokens'], input_budget, target_budget, keep_scheme)
else:
raise ValueError(f"Invalid modality type: {mod_type}")
return masked_mod_dict
class TransferMasking(object):
def __init__(self,
modality_info: Dict,
text_tokenizer: Optional[Tokenizer],
input_modalities: List[str],
target_modalities: List[str]):
"""Performs masking for transfer on a dict of modalities (both image based and sequence based modalities),
by specifying which modalities are inputs and which are targets.
Args:
modality_info: Dict with the modalities and their corresponding information
text_tokenizer: Tokenizer to use for text modalities
input_modalities: List of modalities to use as input
target_modalities: List of modalities to use as target
"""
self.modality_info = modality_info
self.num_modalities = len(modality_info)
self.min_tokens = torch.tensor([mod['min_tokens'] for mod in modality_info.values()])
self.max_tokens = torch.tensor([mod['max_tokens'] for mod in modality_info.values()])
self.mod_is_img = torch.tensor([mod['type'] == 'img' for mod in modality_info.values()])
self.input_modalities = set(input_modalities)
self.target_modalities = set(target_modalities)
# Tokenizer for text modalities
self.text_tokenizer = text_tokenizer
if self.text_tokenizer is not None:
self.keep_prob_decay_factor = 0.9
self.sentinel_to_id = get_sentinel_to_id_mapping(text_tokenizer)
self.sentinel_ids = set(self.sentinel_to_id.values())
self.pad_id = text_tokenizer.token_to_id("[PAD]")
self.eos_id = text_tokenizer.token_to_id("[EOS]")
def input_image(self, tensor: torch.Tensor, num_tokens: int):
"""Applies masking for an image given as input
Args:
tensor: Image tensor
num_tokens: Number of tokens in the tensor
Returns:
Dictionary containing the masked image tensor, the input mask, the target mask, and the decoder attention mask
"""
# Input mask
input_mask = torch.zeros(num_tokens, dtype=torch.bool)
# Target mask
target_mask = torch.ones(num_tokens, dtype=torch.bool)
# Decoder attention mask
decoder_attention_mask = torch.zeros(num_tokens, dtype=torch.int)
return {"tensor": tensor, "input_mask": input_mask, "target_mask": target_mask, "decoder_attention_mask": decoder_attention_mask}
def target_image(self, tensor: torch.Tensor, num_tokens: int):
"""Applies masking for an image given as target
Args:
tensor: Image tensor
num_tokens: Number of tokens in the tensor
Returns:
Dictionary containing the masked image tensor, the input mask, the target mask, and the decoder attention mask
"""
# Input mask
input_mask = torch.ones(num_tokens, dtype=torch.bool)
# Target mask
target_mask = torch.zeros(num_tokens, dtype=torch.bool)
# Decoder attention mask
decoder_attention_mask = torch.zeros(num_tokens, dtype=torch.int)
decoder_attention_mask[0] = num_tokens
return {"tensor": tensor, "input_mask": input_mask, "target_mask": target_mask, "decoder_attention_mask": decoder_attention_mask}
def input_sequence(self, sequence_str: str, max_tokens: int):
"""Applies masking for a sequence given as input
Args:
sequence_str: Sequence string
max_tokens: Maximum number of tokens in the sequence
Returns:
Dictionary containing the masked sequence string, the input mask, the target mask, and the decoder attention mask
"""
# Tokenize the text and get the ids
seq_ids = self.text_tokenizer.encode(sequence_str).ids
# Add EOS to all sequences
seq_ids.append(self.eos_id)
# Truncate sequence
seq_ids = seq_ids[:max_tokens]
keep_prob = 1.
input_seq_ids, target_seq_ids = simple_span_masking(seq_ids, self.sentinel_to_id, keep_prob)
# Span masking can add up to (max_tokens + 1) * 2 tokens for input + target
max_length = (max_tokens + 1) * 2
tensor = torch.ones(max_length, dtype=torch.int) * self.pad_id
input_mask = torch.ones(max_length, dtype=torch.bool)
target_mask = torch.ones(max_length, dtype=torch.bool)
decoder_attention_mask = torch.zeros(max_length, dtype=torch.int)
# Set input and input mask
tensor[:len(input_seq_ids)] = torch.tensor(input_seq_ids, dtype=torch.int)
input_mask[:len(input_seq_ids)] = 0
tensor[max_tokens:max_tokens + len(target_seq_ids)] = torch.tensor(target_seq_ids, dtype=torch.int)
target_mask[max_tokens:max_tokens + len(target_seq_ids)] = 0
decoder_attention_mask[max_tokens:max_tokens + len(target_seq_ids)] = 1
return {"tensor": tensor, "input_mask": input_mask, "target_mask": target_mask, "decoder_attention_mask": decoder_attention_mask}
def target_sequence(self, sequence_str: str, max_tokens: int):
"""Applies masking for a sequence given as target
Args:
sequence_str: Sequence string
max_tokens: Maximum number of tokens in the sequence
Returns:
Dictionary containing the masked sequence string, the input mask, the target mask, and the decoder attention mask
"""
# Tokenize the text and get the ids
seq_ids = self.text_tokenizer.encode(sequence_str).ids
# Add EOS to all sequences
seq_ids.append(self.eos_id)
# Truncate sequence
seq_ids = seq_ids[:max_tokens]
keep_prob = 0.
input_seq_ids = []
_, target_seq_ids = simple_span_masking(seq_ids, self.sentinel_to_id, keep_prob)
# Span masking can add up to (max_tokens + 1) * 2 tokens for input + target
max_length = (max_tokens + 1) * 2
tensor = torch.ones(max_length, dtype=torch.int) * self.pad_id
input_mask = torch.ones(max_length, dtype=torch.bool)
target_mask = torch.ones(max_length, dtype=torch.bool)
decoder_attention_mask = torch.zeros(max_length, dtype=torch.int)
# Set input and input mask
tensor[:len(input_seq_ids)] = torch.tensor(input_seq_ids, dtype=torch.int)
input_mask[:len(input_seq_ids)] = 0
tensor[max_tokens:max_tokens + len(target_seq_ids)] = torch.tensor(target_seq_ids, dtype=torch.int)
target_mask[max_tokens:max_tokens + len(target_seq_ids)] = 0
decoder_attention_mask[max_tokens:max_tokens + len(target_seq_ids)] = 1
return {"tensor": tensor, "input_mask": input_mask, "target_mask": target_mask,
"decoder_attention_mask": decoder_attention_mask}
def __call__(self, mod_dict):
"""Applies input and target masking to a dictionary of modalities
Args:
mod_dict: Dictionary of modalities
Returns:
Dictionary containing the masked modalities
"""
masked_mod_dict = {}
for mod_name, mod_info in self.modality_info.items():
mod_type = mod_info['type']
if mod_type == 'img' and mod_name in self.input_modalities:
masked_mod_dict[mod_name] = self.input_image(mod_dict[mod_name], mod_info['max_tokens'])
elif mod_type == 'img' and mod_name in self.target_modalities:
masked_mod_dict[mod_name] = self.target_image(mod_dict[mod_name], mod_info['max_tokens'])
elif mod_type == 'seq' and mod_name in self.input_modalities:
masked_mod_dict[mod_name] = self.input_sequence(mod_dict[mod_name], mod_info['max_tokens'])
elif mod_type == 'seq' and mod_name in self.target_modalities:
masked_mod_dict[mod_name] = self.target_sequence(mod_dict[mod_name], mod_info['max_tokens'])
else:
raise ValueError(f"Invalid modality type: {mod_type} or modality name not in input or target modalities: {mod_name}")
if 'mask_valid' in mod_dict:
masked_mod_dict['mask_valid'] = mod_dict['mask_valid']
return masked_mod_dict |