File size: 18,823 Bytes
3424266
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
# Copyright 2024 EPFL and Apple Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import Dict, List, Optional, Tuple, Union

import torch
import torch.nn as nn
from einops import rearrange, repeat

from .fm_utils import build_1d_sincos_posemb, build_2d_sincos_posemb, pair

class SequenceEncoderEmbedding(nn.Module):
    """Embedding module for encoding sequence inputs, like captions or a sequence of objects.

    Args:
        vocab_size: Vocabulary size
        max_length: Maximum number of tokens in the sequence
        dim_tokens: Dimension of output tokens. Can be set using init method.
        sincos_pos_emb: Set to True (default) to use fixed 1D sin-cos positional embeddings
        max_sincos_pos_emb: Maximum allowed length for sin-cos positional embeddings
        padding_idx: Padding index for word embedding
    """

    def __init__(self,
                 vocab_size: int,
                 max_length: int,
                 dim_tokens: Optional[int] = None,
                 sincos_pos_emb: bool = True,
                 max_sincos_pos_emb: int = 512,
                 padding_idx: int = 0,
                 ):
        super().__init__()
        self.vocab_size = vocab_size
        self.max_length = max_length
        self.dim_tokens = dim_tokens
        self.sincos_pos_emb = sincos_pos_emb
        self.padding_idx = padding_idx
        self.max_sincos_pos_emb = max_sincos_pos_emb

        if self.dim_tokens is not None:
            self.init(dim_tokens=dim_tokens)

    def init(self, dim_tokens: int = 768, init_std=0.02):
        """
        Initialize parts of embedding module that are dependent on dimension of tokens.
        Should be called when setting up FourM.

        Args:
            dim_tokens: Dimension of tokens
            init_std: Standard deviation of init
        """
        self.dim_tokens = dim_tokens

        # Task embedding identifying from which task a given token comes from
        # Fixed-size positional embeddings. Can be interpolated to different input sizes
        if self.sincos_pos_emb:
            if self.max_length > self.max_sincos_pos_emb:
                raise ValueError(f"Max length ({self.max_length}) is greater than the number of posembs ({self.max_sincos_pos_emb}")
            pos_emb = build_1d_sincos_posemb(max_len=self.max_sincos_pos_emb, embed_dim=self.dim_tokens)[:self.max_length]
            self.register_buffer("pos_emb", pos_emb) # self.pos_emb is now a buffer for FSDP
        else:
            self.pos_emb = nn.Parameter(torch.zeros(1, self.max_length, self.dim_tokens))
            nn.init.normal_(self.pos_emb, std=init_std)

        self.mod_emb = nn.Parameter(torch.zeros(1, 1, self.dim_tokens))
        nn.init.normal_(self.mod_emb, std=init_std)

        # Token embedding
        self.token_emb = nn.Embedding(num_embeddings=self.vocab_size, embedding_dim=self.dim_tokens,
                                     padding_idx=self.padding_idx)


    @torch.jit.ignore
    def no_weight_decay(self):
        return set()

    def forward(self, d : Dict[str, torch.Tensor]) -> Dict[str, torch.Tensor]:
        """
        Forward pass through embedding module, transforming sequence of ids to sequence of embeddings.
        Creates corresponding modality and positional embeddings and adds them to the dict.

        Args:
            d (Dict[str, torch.Tensor]): Modality dict with at least the following keys:
                - 'tensor' (torch.Tensor): Input token sequence for each batch. Shape (B, L) where B is the batch size and L is the sequence length.
                - 'input_mask' (torch.Tensor): Mask for valid tokens in the input sequence (set to 0 for valid tokens and 1 otherwise). Shape (B, L).

        Returns:
            Dict[str, torch.Tensor]: Modality dict with added keys:
                - 'x' (torch.Tensor): Embedded token sequence. Shape (B, L, D) where D is the embedding dimension.
                - 'emb' (torch.Tensor): Sum of positional and modality embeddings for the input sequence. Shape (B, L, D).
        """
        ids = d['tensor']
        B = ids.shape[0]
        assert self.dim_tokens is not None, 'Need to call init(dim_tokens) function first'

        # Map to embedding
        x = self.token_emb(ids)

        expanded_pos_emb = repeat(self.pos_emb, "() n d -> b n d", b=B)
        # Input pos encoding
        input_mask = d['input_mask']
        input_pos_id = (~input_mask).int().cumsum(dim=1) - 1
        input_pos_id[input_mask] = 0
        input_pos_emb = torch.gather(expanded_pos_emb, dim=1, index=repeat(input_pos_id, "b n -> b n d", d=expanded_pos_emb.shape[2]))
        input_pos_emb[input_mask] = 0

        x_emb = input_pos_emb + self.mod_emb

        d['x'] = x
        d['emb'] = x_emb
        return d
    
class ImageTokenEncoderEmbedding(nn.Module):
    """Embedding module for tokenized spatial inputs.

    Args:
        vocab_size: Vocabulary size
        patch_size: Int or tuple of the patch size over the full image size.
        dim_tokens: Dimension of output tokens. Can be set using init method.
        sincos_pos_emb: Set to True (default) to use fixed 2D sin-cos positional embeddings
        image_size: Default image size. Used to initialize size of positional embeddings.
    """
    def __init__(self,
                 vocab_size: int,
                 patch_size: Union[int, Tuple[int,int]] = 16,
                 dim_tokens: Optional[int] = None,
                 sincos_pos_emb: bool = True,
                 image_size: Union[int, Tuple[int]] = 224,
                 **kwargs):

        super().__init__()
        self.vocab_size = vocab_size
        self.patch_size = pair(patch_size)
        self.dim_tokens = dim_tokens
        self.sincos_pos_emb = sincos_pos_emb
        self.image_size = pair(image_size)
        self.num_patches = (self.image_size[0] // patch_size) * (self.image_size[1] // patch_size)

        if self.dim_tokens is not None:
            self.init(dim_tokens=dim_tokens)

    def init(self, dim_tokens: int = 768, init_std=0.02):
        """
        Initialize parts of module that are dependent on dimension of tokens.
        Should be called when setting up FourM.

        Args:
            dim_tokens: Dimension of tokens
            init_std: Standard deviation of init
        """
        self.dim_tokens = dim_tokens

        # Task embedding identifying from which task a given token comes from
        # Fixed-size positional embeddings. Can be interpolated to different input sizes
        h_posemb = self.image_size[0] // self.patch_size[0]
        w_posemb = self.image_size[1] // self.patch_size[1]
        if self.sincos_pos_emb:
            pos_emb = build_2d_sincos_posemb(h=h_posemb, w=w_posemb, embed_dim=self.dim_tokens)
            self.register_buffer("pos_emb", pos_emb) # self.pos_emb is now a buffer for FSDP
        else:
            self.pos_emb = nn.Parameter(torch.zeros(1, (h_posemb * w_posemb), self.dim_tokens))
            nn.init.normal_(self.pos_emb, std=init_std)

        self.mod_emb = nn.Parameter(torch.zeros(1, 1, self.dim_tokens))
        nn.init.normal_(self.mod_emb, std=init_std)

        # Token embedding
        self.token_emb = nn.Embedding(num_embeddings=self.vocab_size, embedding_dim=self.dim_tokens)

    @torch.jit.ignore
    def no_weight_decay(self):
        return set()

    def forward(self, d: Dict[str, torch.Tensor]) -> Dict[str, torch.Tensor]:
        """
        Forward pass through embedding module, transforming image tokens to a sequence of embeddings.
        Creates corresponding modality and positional embeddings and adds them to the dict.

        Args:
            d (Dict[str, torch.Tensor]): Modality dict with at least the following key:
                - 'tensor' (torch.Tensor): Input image tokens for each batch. Shape (B, H, W) where B is the batch size, and H, W are height and width of the tokenized image.                - 'input_mask' (torch.Tensor): Mask for valid tokens in the input sequence (set to 0 for valid tokens and 1 otherwise). Shape (B, L).

        Returns:
            Dict[str, torch.Tensor]: Modality dictionary with added keys:
                - 'x' (torch.Tensor): Embedded token sequence. Shape (B, H*W, D).
                - 'emb' (torch.Tensor): Sum of positional and modality embeddings for the input sequence. Shape (B, H*W, D).
        """
        ids = d['tensor']
        B = ids.shape[0]
        ids = ids.reshape(B, -1)

        # Map to embedding
        x = self.token_emb(ids)

        # Create positional embedding + modality embedding
        x_emb = repeat(self.pos_emb + self.mod_emb, '() n d -> b n d', b=B)

        d['x'] = x
        d['emb'] = x_emb

        return d


class ImageEncoderEmbedding(nn.Module):
    """Embedding module for spatial inputs, like images or feature maps.
    Creates tokens from patches over the image.

    This adapter / embedding differs from the one of MultiMAE by taking as input a dict and
     separating positional embeddings and modality embeddings from the input projection
     Input projection is 'x', posemb + modemb is 'emb'

    Args:
        num_channels: Number of input channels of the image/feature map
        patch_size: Int or tuple of the patch size over the full image size.
        dim_tokens: Dimension of output tokens. Can be set using init method.
        sincos_pos_emb: Set to True (default) to use fixed 2D sin-cos positional embeddings
        image_size: Default image size. Used to initialize size of positional embeddings.
    """
    def __init__(self,
                 num_channels: int,
                 patch_size: Union[int, Tuple[int,int]],
                 dim_tokens: Optional[int] = None,
                 sincos_pos_emb: bool = True,
                 image_size: Union[int, Tuple[int]] = 224):

        super().__init__()
        self.num_channels = num_channels
        self.patch_size = pair(patch_size)
        self.dim_tokens = dim_tokens
        self.sincos_pos_emb = sincos_pos_emb
        self.image_size = pair(image_size)
        self.num_patches = (self.image_size[0] // patch_size) * (self.image_size[1] // patch_size)

        if self.dim_tokens is not None:
            self.init(dim_tokens=dim_tokens)

    def init(self, dim_tokens: int = 768, init_std=0.02):
        """
        Initialize parts of encoder that are dependent on dimension of tokens.
        Should be called when setting up FourM.

        Args:
            dim_tokens: Dimension of tokens
            init_std: Standard deviation of init
        """
        self.dim_tokens = dim_tokens

        # Task embedding identifying from which task a given token comes from
        # Fixed-size positional embeddings. Can be interpolated to different input sizes
        h_posemb = self.image_size[0] // self.patch_size[0]
        w_posemb = self.image_size[1] // self.patch_size[1]
        if self.sincos_pos_emb:
            pos_emb = build_2d_sincos_posemb(h=h_posemb, w=w_posemb, embed_dim=self.dim_tokens)
            self.register_buffer("pos_emb", pos_emb) # self.pos_emb is now a buffer for FSDP
        else:
            self.pos_emb = nn.Parameter(torch.zeros(1, (h_posemb * w_posemb), self.dim_tokens))
            nn.init.normal_(self.pos_emb, std=init_std)

        self.mod_emb = nn.Parameter(torch.zeros(1, 1, self.dim_tokens))
        nn.init.normal_(self.mod_emb, std=init_std)

        # Image -> tokens projection
        # No bias term here, so modality embedding fully comes from self.mod_emb
        self.proj = nn.Linear(self.num_channels * self.patch_size[0] * self.patch_size[1], self.dim_tokens, bias=False)

    @torch.jit.ignore
    def no_weight_decay(self):
        return set()

    def forward(self, d: Dict[str, torch.Tensor]) -> Dict[str, torch.Tensor]:
        """
        Forward pass through embedding module, transforming image to sequence of tokens.
        Creates corresponding modality and positional embeddings and adds them to the dict.

        Args:
            d (Dict[str, torch.Tensor]): Modality dict with at least the following key:
                - 'tensor' (torch.Tensor): Input image for each batch. Shape (B, C, H, W) where B is the batch size, C is the number of channels, and H, W are height and width of the image.

                
        Returns:
            Dict[str, torch.Tensor]: Modality dict with added keys:
                - 'x' (torch.Tensor): Embedded token sequence. Shape (B, (H / PH) * (W / PW), D), where PH and PW are the patch sizes
                - 'emb' (torch.Tensor): Sum of positional and modality embeddings for the input sequence. Shape (B, (H / PH) * (W / PW), D)
        """
        x = d['tensor']
        B, C, H, W = x.shape
        assert self.dim_tokens is not None, 'Need to call init(dim_tokens) function first'
        assert (H % self.patch_size[0] == 0) and (W % self.patch_size[1] == 0), f'Image sizes {H}x{W} must be divisible by patch sizes {self.patch_size[0]}x{self.patch_size[1]}'

        # Create patches [B, C, H, W] -> [B, (H*W), C]
        x_patch = self.proj(rearrange(x, 'b d (nh ph) (nw pw) -> b (nh nw) (ph pw d)', ph=self.patch_size[0], pw=self.patch_size[1]))

        # Create positional embedding + modality embedding
        x_emb = repeat(self.pos_emb + self.mod_emb, '() n d -> b n d', b=B)

        d['x'] = x_patch
        d['emb'] = x_emb

        return d


class SequenceEmbEncoderEmbedding(nn.Module):
    """Adapter for sequence emb inputs, like T5-XXL, CLIP text embeddings.

    Args:
        max_length: Maximum number of tokens in the sequence
        dim_tokens: Dimension of output tokens. Can be set using init method.
        sincos_pos_emb: Set to True (default) to use fixed 1D sin-cos positional embeddings
        padding_idx: Padding index for word embedding
        orig_emb_dim: Dimension of original embeddings
        bottleneck_dim: Dimension of bottleneck layer
        use_bottleneck: Set to True to use bottleneck layer
    """
    def __init__(self,
                 max_length: int,
                 dim_tokens: Optional[int] = None,
                 sincos_pos_emb: bool = True,
                 max_sincos_pos_emb: int = 512,
                 padding_idx: int = 0,
                 orig_emb_dim: int = 4096,
                 bottleneck_dim: int = 64,
                 use_bottleneck: bool = False,
                 ):
        super().__init__()
        self.max_length = max_length
        self.dim_tokens = dim_tokens
        self.sincos_pos_emb = sincos_pos_emb
        self.padding_idx = padding_idx
        self.max_sincos_pos_emb = max_sincos_pos_emb
        self.orig_emb_dim = orig_emb_dim
        self.use_bottleneck = use_bottleneck
        if self.use_bottleneck:
            self.bottleneck_dim = bottleneck_dim

        if self.dim_tokens is not None:
            self.init(dim_tokens=dim_tokens)

    def init(self, dim_tokens: int = 768, init_std=0.02):
        """
        Initialize parts of embedding module that are dependent on dimension of tokens.
        Should be called when setting up FourM.

        Args:
            dim_tokens: Dimension of tokens
            init_std: Standard deviation of init
        """
        self.dim_tokens = dim_tokens

        # Task embedding identifying from which task a given token comes from
        # Fixed-size positional embeddings. Can be interpolated to different input sizes
        if self.sincos_pos_emb:
            if self.max_length > self.max_sincos_pos_emb:
                raise ValueError(f"Max length ({self.max_length}) is greater than the number of posembs ({self.max_sincos_pos_emb}")
            pos_emb = build_1d_sincos_posemb(max_len=self.max_sincos_pos_emb, embed_dim=self.dim_tokens)[:self.max_length]
            self.register_buffer("pos_emb", pos_emb) # self.pos_emb is now a buffer for FSDP
        else:
            self.pos_emb = nn.Parameter(torch.zeros(1, self.max_length, self.dim_tokens))
            nn.init.normal_(self.pos_emb, std=init_std)

        self.mod_emb = nn.Parameter(torch.zeros(1, 1, self.dim_tokens))
        nn.init.normal_(self.mod_emb, std=init_std)

        # Token embedding projection
        if self.use_bottleneck:
            self.emb_proj = nn.Sequential(
                nn.Linear(self.orig_emb_dim, self.bottleneck_dim),
                nn.Linear(self.bottleneck_dim, self.dim_tokens),
            )
        else:
            self.emb_proj = nn.Linear(self.orig_emb_dim, self.dim_tokens)


    @torch.jit.ignore
    def no_weight_decay(self):
        return set()

    def forward(self, d):
        """
        Forward pass through embedding module, projecting original embeddings to the Transformer dimension.
        Creates corresponding modality and positional embeddings and adds them to the dict.

        Args:
            d (Dict[str, torch.Tensor]): Modality dict with at least the following keys:
                - 'tensor' (torch.Tensor): Input token sequence for each batch. Shape (B, L, E) where B is the batch size and L is the sequence length, and E is the dimension of the original embeddings.
                - 'input_mask' (torch.Tensor): Mask for valid tokens in the input sequence (set to 0 for valid tokens and 1 otherwise). Shape (B, L).

        Returns:
            Dict[str, torch.Tensor]: Modality dict with added keys:
                - 'x' (torch.Tensor): Embedded token sequence. Shape (B, L, D) where D is the Transformer embedding dimension.
                - 'emb' (torch.Tensor): Sum of positional and modality embeddings for the input sequence. Shape (B, L, D).
        """
        orig_emb = d['tensor']
        B = orig_emb.shape[0]
        assert self.dim_tokens is not None, 'Need to call init(dim_tokens) function first'

        # Map to embedding
        x = self.emb_proj(orig_emb)

        expanded_pos_emb = repeat(self.pos_emb, "() n d -> b n d", b=B)
        # Input pos encoding
        input_mask = d['input_mask']
        input_pos_id = (~input_mask).int().cumsum(dim=1) - 1
        input_pos_id[input_mask] = 0
        input_pos_emb = torch.gather(expanded_pos_emb, dim=1, index=repeat(input_pos_id, "b n -> b n d", d=expanded_pos_emb.shape[2]))
        input_pos_emb[input_mask] = 0

        x_emb = input_pos_emb + self.mod_emb

        d['x'] = x
        d['emb'] = x_emb
        return d