Spaces:
Runtime error
Runtime error
File size: 16,626 Bytes
3424266 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 |
# Copyright 2024 EPFL and Apple Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# --------------------------------------------------------
# Some functions are based on the timm code base
# https://github.com/huggingface/pytorch-image-models
# --------------------------------------------------------
import torch
import torch.nn as nn
import torch.nn.functional as F
from einops import rearrange
def pair(t):
return t if isinstance(t, tuple) else (t, t)
def softmax1(tensor):
# See https://www.evanmiller.org/attention-is-off-by-one.html
return F.pad(tensor, (0,1)).softmax(dim=-1)[...,:-1]
def build_1d_sincos_posemb(max_len, embed_dim=1024, temperature=10000.):
"""Sine-cosine positional embeddings from MoCo-v3, adapted back to 1d
Returns positional embedding of shape (1, N, D)
"""
arange = torch.arange(max_len, dtype=torch.float32) # Shape (N,)
assert embed_dim % 2 == 0, 'Embed dimension must be divisible by 2 for 1D sin-cos position embedding'
pos_dim = embed_dim // 2
omega = torch.arange(pos_dim, dtype=torch.float32) / pos_dim # Shape (D/2,)
omega = 1. / (temperature ** omega)
out = torch.einsum('n,d->nd', [arange, omega]) # Outer product, shape (N, D/2)
pos_emb = torch.cat([torch.sin(out), torch.cos(out)], dim=1).unsqueeze(0) # Shape (1, N, D)
return pos_emb
def build_2d_sincos_posemb(h, w, embed_dim=1024, temperature=10000.0):
"""Sine-cosine positional embeddings as used in MoCo-v3
Returns positional embedding of shape (1, N, D) where N = W*H
"""
grid_w = torch.arange(w, dtype=torch.float32) # Shape (W,)
grid_h = torch.arange(h, dtype=torch.float32) # Shape (H, )
grid_w, grid_h = torch.meshgrid(grid_w, grid_h, indexing='ij') # Shapes (W, H)
assert embed_dim % 4 == 0, 'Embed dimension must be divisible by 4 for 2D sin-cos position embedding'
pos_dim = embed_dim // 4
omega = torch.arange(pos_dim, dtype=torch.float32) / pos_dim # Shape (D/4,)
omega = 1. / (temperature ** omega)
out_w = torch.einsum('n,d->nd', [grid_w.reshape(-1), omega]) # Outer product, shape (W*H, D/4)
out_h = torch.einsum('n,d->nd', [grid_h.reshape(-1), omega]) # Outer product, shape (W*H, D/4)
pos_emb = torch.cat([torch.sin(out_w), torch.cos(out_w), torch.sin(out_h), torch.cos(out_h)], dim=1).unsqueeze(0) # Shape (1, W*H, D)
return pos_emb
def drop_path(x, drop_prob: float = 0., training: bool = False):
"""Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks).
Implementation from timm: https://github.com/huggingface/pytorch-image-models/blob/main/timm/layers/drop.py
"""
if drop_prob == 0. or not training:
return x
keep_prob = 1 - drop_prob
shape = (x.shape[0],) + (1,) * (x.ndim - 1) # work with diff dim tensors, not just 2D ConvNets
random_tensor = keep_prob + torch.rand(shape, dtype=x.dtype, device=x.device)
random_tensor.floor_() # binarize
output = x.div(keep_prob) * random_tensor
return output
class DropPath(nn.Module):
"""Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks).
"""
def __init__(self, drop_prob=None):
super(DropPath, self).__init__()
self.drop_prob = drop_prob
def forward(self, x):
return drop_path(x, self.drop_prob, self.training)
def extra_repr(self) -> str:
return 'p={}'.format(self.drop_prob)
class LayerNorm(nn.Module):
"""Custom implementation of LayerNorm with the option to disable the bias term"""
def __init__(self, normalized_shape: int, eps=1e-5, bias=True):
super().__init__()
self.eps = eps
self.weight = nn.Parameter(torch.ones(normalized_shape))
if bias:
self.bias = nn.Parameter(torch.zeros(normalized_shape))
else:
self.register_buffer("bias", torch.zeros(normalized_shape))
# Normalized shape must be a tuple for F.layer_norm
self.normalized_shape = (normalized_shape,)
def forward(self, x):
return nn.functional.layer_norm(x, self.normalized_shape, self.weight, self.bias, eps=self.eps)
class Mlp(nn.Module):
def __init__(self, in_features, hidden_features=None, out_features=None, act_layer=nn.GELU, drop=0., bias=True):
super().__init__()
out_features = out_features or in_features
hidden_features = hidden_features or in_features
self.fc1 = nn.Linear(in_features, hidden_features, bias=bias)
self.act = act_layer()
self.fc2 = nn.Linear(hidden_features, out_features, bias=bias)
self.drop = nn.Dropout(drop)
def forward(self, x):
x = self.fc1(x)
x = self.act(x)
x = self.fc2(x)
x = self.drop(x)
return x
class GatedMlp(nn.Module):
"""Implements SwiGLU and other gated feed-forward layers from Noam Shazeer's paper: https://arxiv.org/abs/2002.05202
"""
def __init__(self, in_features, hidden_features=None, out_features=None, act_layer=nn.SiLU, bias=True):
super().__init__()
out_features = out_features or in_features
# If gated, multiply hidden_dim by 2/3 to account for extra matmul
hidden_features = int(2 * (hidden_features or in_features) / 3)
self.fc1 = nn.Linear(in_features, hidden_features, bias=bias)
self.act = act_layer()
self.fc2 = nn.Linear(hidden_features, out_features, bias=bias)
self.fc3 = nn.Linear(in_features, hidden_features, bias=bias)
def forward(self, x):
x = self.fc2(self.act(self.fc1(x)) * self.fc3(x))
return x
class Attention(nn.Module):
def __init__(self, dim, num_heads=8, qkv_bias=False, proj_bias=True, attn_drop=0., proj_drop=0., allow_zero_attn=False):
super().__init__()
self.num_heads = num_heads
head_dim = dim // num_heads
self.scale = head_dim ** -0.5
self.allow_zero_attn = allow_zero_attn
self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias)
self.attn_drop = nn.Dropout(attn_drop)
self.proj = nn.Linear(dim, dim, bias=proj_bias)
self.proj_drop = nn.Dropout(proj_drop)
def forward(self, x, mask=None):
B, N, C = x.shape
qkv = self.qkv(x).reshape(B, N, 3, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4)
q, k, v = qkv.unbind(0) # make torchscript happy (cannot use tensor as tuple)
attn = (q @ k.transpose(-2, -1)) * self.scale
if mask is not None:
mask = mask.unsqueeze(1) # Unsqueeze attention mask for multi-head
attn = attn.masked_fill(mask, -torch.finfo(attn.dtype).max)
if self.allow_zero_attn:
attn = softmax1(attn)
else:
attn = attn.softmax(dim=-1)
attn = self.attn_drop(attn)
x = (attn @ v).transpose(1, 2).reshape(B, N, C)
x = self.proj(x)
x = self.proj_drop(x)
return x
class CrossAttention(nn.Module):
def __init__(self, dim, num_heads=8, qkv_bias=False, proj_bias=True, attn_drop=0., proj_drop=0., allow_zero_attn=False):
super().__init__()
self.num_heads = num_heads
head_dim = dim // num_heads
self.scale = head_dim ** -0.5
self.allow_zero_attn = allow_zero_attn
self.q = nn.Linear(dim, dim, bias=qkv_bias)
self.kv = nn.Linear(dim, dim * 2, bias=qkv_bias)
self.attn_drop = nn.Dropout(attn_drop)
self.proj = nn.Linear(dim, dim, bias=proj_bias)
self.proj_drop = nn.Dropout(proj_drop)
def forward(self, x, context, mask=None):
B, N, C = x.shape
_, M, _ = context.shape
q = self.q(x).reshape(B, N, self.num_heads, C // self.num_heads).permute(0, 2, 1, 3)
kv = self.kv(context).reshape(B, M, 2, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4)
k, v = kv[0], kv[1]
attn = (q @ k.transpose(-2, -1)) * self.scale
if mask is not None:
mask = rearrange(mask, "b n m -> b 1 n m") # Unsqueeze / reshape for multi-head
attn = attn.masked_fill(mask, -torch.finfo(attn.dtype).max)
if self.allow_zero_attn:
attn = softmax1(attn)
else:
attn = attn.softmax(dim=-1)
attn = self.attn_drop(attn)
x = (attn @ v).transpose(1, 2).reshape(B, N, -1)
x = self.proj(x)
x = self.proj_drop(x)
return x
class NormAttention(nn.Module):
def __init__(self, dim, num_heads=8, qkv_bias=False, proj_bias=True, norm_layer=nn.LayerNorm, attn_drop=0., proj_drop=0., allow_zero_attn=False):
super().__init__()
self.num_heads = num_heads
head_dim = dim // num_heads
self.scale = head_dim ** -0.5
self.allow_zero_attn = allow_zero_attn
self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias)
self.attn_drop = nn.Dropout(attn_drop)
self.proj = nn.Linear(dim, dim, bias=proj_bias)
self.proj_drop = nn.Dropout(proj_drop)
self.q_norm = norm_layer(head_dim)
self.k_norm = norm_layer(head_dim)
def forward(self, x, mask=None):
B, N, C = x.shape
qkv = self.qkv(x).reshape(B, N, 3, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4)
q, k, v = qkv.unbind(0) # make torchscript happy (cannot use tensor as tuple)
q = self.q_norm(q)
k = self.k_norm(k)
attn = (q @ k.transpose(-2, -1)) * self.scale
if mask is not None:
mask = mask.unsqueeze(1) # Unsqueeze for multi-head
attn = attn.masked_fill(mask, -torch.finfo(attn.dtype).max)
if self.allow_zero_attn:
attn = softmax1(attn)
else:
attn = attn.softmax(dim=-1)
attn = self.attn_drop(attn)
x = (attn @ v).transpose(1, 2).reshape(B, N, C)
x = self.proj(x)
x = self.proj_drop(x)
return x
class NormCrossAttention(nn.Module):
def __init__(self, dim, num_heads=8, qkv_bias=False, proj_bias=True, norm_layer=nn.LayerNorm, attn_drop=0., proj_drop=0., allow_zero_attn=False):
super().__init__()
self.num_heads = num_heads
head_dim = dim // num_heads
self.scale = head_dim ** -0.5
self.allow_zero_attn = allow_zero_attn
self.q = nn.Linear(dim, dim, bias=qkv_bias)
self.kv = nn.Linear(dim, dim * 2, bias=qkv_bias)
self.attn_drop = nn.Dropout(attn_drop)
self.proj = nn.Linear(dim, dim, bias=proj_bias)
self.proj_drop = nn.Dropout(proj_drop)
self.q_norm = norm_layer(head_dim)
self.k_norm = norm_layer(head_dim)
def forward(self, x, context, mask=None):
B, N, C = x.shape
_, M, _ = context.shape
q = self.q(x).reshape(B, N, self.num_heads, C // self.num_heads).permute(0, 2, 1, 3)
kv = self.kv(context).reshape(B, M, 2, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4)
k, v = kv[0], kv[1]
q = self.q_norm(q)
k = self.k_norm(k)
attn = (q @ k.transpose(-2, -1)) * self.scale
if mask is not None:
mask = rearrange(mask, "b n m -> b 1 n m") # Unsqueeze / reshape for multi-head
attn = attn.masked_fill(mask, -torch.finfo(attn.dtype).max)
if self.allow_zero_attn:
attn = softmax1(attn)
else:
attn = attn.softmax(dim=-1)
attn = self.attn_drop(attn)
x = (attn @ v).transpose(1, 2).reshape(B, N, -1)
x = self.proj(x)
x = self.proj_drop(x)
return x
class Block(nn.Module):
def __init__(self, dim, num_heads, mlp_ratio=4., qkv_bias=True, proj_bias=True, mlp_bias=True, drop=0., attn_drop=0.,
drop_path=0., act_layer=nn.GELU, norm_layer=nn.LayerNorm, gated_mlp=False, qk_norm=False, allow_zero_attn=False):
super().__init__()
self.norm1 = norm_layer(dim)
if not qk_norm:
self.attn = Attention(dim, num_heads=num_heads, qkv_bias=qkv_bias, proj_bias=proj_bias, attn_drop=attn_drop, proj_drop=drop, allow_zero_attn=allow_zero_attn)
else:
self.attn = NormAttention(dim, num_heads=num_heads, qkv_bias=qkv_bias, proj_bias=proj_bias, norm_layer=norm_layer, attn_drop=attn_drop, proj_drop=drop, allow_zero_attn=allow_zero_attn)
self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity()
self.norm2 = norm_layer(dim)
mlp_hidden_dim = int(dim * mlp_ratio)
if not gated_mlp:
self.mlp = Mlp(in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer, bias=mlp_bias, drop=drop)
else:
self.mlp = GatedMlp(in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer, bias=mlp_bias)
def forward(self, x, mask=None):
x = x + self.drop_path(self.attn(self.norm1(x), mask))
x = x + self.drop_path(self.mlp(self.norm2(x)))
return x
class DecoderBlock(nn.Module):
def __init__(self, dim, num_heads, mlp_ratio=4., qkv_bias=True, proj_bias=True, mlp_bias=True, drop=0., attn_drop=0.,
drop_path=0., act_layer=nn.GELU, norm_layer=nn.LayerNorm, gated_mlp=False, qk_norm=False, allow_zero_attn=False):
super().__init__()
self.norm1 = norm_layer(dim)
if not qk_norm:
self.self_attn = Attention(dim, num_heads=num_heads, qkv_bias=qkv_bias, proj_bias=proj_bias, attn_drop=attn_drop, proj_drop=drop, allow_zero_attn=allow_zero_attn)
self.cross_attn = CrossAttention(dim, num_heads=num_heads, qkv_bias=qkv_bias, proj_bias=proj_bias, attn_drop=attn_drop, proj_drop=drop, allow_zero_attn=allow_zero_attn)
else:
self.self_attn = NormAttention(dim, num_heads=num_heads, qkv_bias=qkv_bias, proj_bias=proj_bias, norm_layer=norm_layer, attn_drop=attn_drop, proj_drop=drop, allow_zero_attn=allow_zero_attn)
self.cross_attn = NormCrossAttention(dim, num_heads=num_heads, qkv_bias=qkv_bias, proj_bias=proj_bias, norm_layer=norm_layer, attn_drop=attn_drop, proj_drop=drop, allow_zero_attn=allow_zero_attn)
self.query_norm = norm_layer(dim)
self.context_norm = norm_layer(dim)
self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity()
self.norm2 = norm_layer(dim)
mlp_hidden_dim = int(dim * mlp_ratio)
if not gated_mlp:
self.mlp = Mlp(in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer, bias=mlp_bias, drop=drop)
else:
self.mlp = GatedMlp(in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer, bias=mlp_bias)
def forward(self, x, context, sa_mask=None, xa_mask=None):
x = x + self.drop_path(self.self_attn(self.norm1(x), sa_mask))
x = x + self.drop_path(self.cross_attn(self.query_norm(x), self.context_norm(context), xa_mask))
x = x + self.drop_path(self.mlp(self.norm2(x)))
return x
class CrossAttentionBlock(nn.Module):
def __init__(self, dim, num_heads, mlp_ratio=4., qkv_bias=False, drop=0., attn_drop=0.,
drop_path=0., act_layer=nn.GELU, norm_layer=nn.LayerNorm, gated_mlp=False, allow_zero_attn=False):
super().__init__()
self.cross_attn = CrossAttention(dim, num_heads=num_heads, qkv_bias=qkv_bias, attn_drop=attn_drop, proj_drop=drop, allow_zero_attn=allow_zero_attn)
self.query_norm = norm_layer(dim)
self.context_norm = norm_layer(dim)
self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity()
self.norm2 = norm_layer(dim)
mlp_hidden_dim = int(dim * mlp_ratio)
if not gated_mlp:
self.mlp = Mlp(in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer, drop=drop)
else:
self.mlp = GatedMlp(in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer)
def forward(self, x, context, xa_mask=None, **kwargs):
x = x + self.drop_path(self.cross_attn(self.query_norm(x), self.context_norm(context), xa_mask))
x = x + self.drop_path(self.mlp(self.norm2(x)))
return x
|