Spaces:
Runtime error
Runtime error
File size: 6,323 Bytes
453e23a fc9fb44 31b8277 453e23a 31b8277 453e23a 31b8277 453e23a 31b8277 453e23a 31b8277 453e23a 31b8277 453e23a fc9fb44 fb921cd fc9fb44 453e23a fb921cd 453e23a aec3d20 453e23a b80edfd 453e23a 085dba7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 |
import os
from pathlib import Path
import torch
import numpy as np
from PIL import Image
import gradio as gr
from tokenizers import Tokenizer
from torch.utils.data import Dataset
import albumentations as A
from tqdm import tqdm
from huggingface_hub import hf_hub_download
from datasets import load_dataset
from fourm.vq.vqvae import VQVAE
from fourm.models.fm import FM
from fourm.models.generate import (
GenerationSampler,
build_chained_generation_schedules,
init_empty_target_modality,
custom_text,
)
from fourm.utils.plotting_utils import decode_dict
from fourm.data.modality_info import MODALITY_INFO
from fourm.data.modality_transforms import RGBTransform
from torchvision.transforms.functional import center_crop
# Constants and configurations
DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
IMG_SIZE = 224
TOKENIZER_PATH = "./fourm/utils/tokenizer/trained/text_tokenizer_4m_wordpiece_30k.json"
FM_MODEL_PATH = "EPFL-VILAB/4M-21_L"
VQVAE_PATH = "EPFL-VILAB/4M_tokenizers_DINOv2-B14-global_8k_16_224"
IMAGE_DATASET_PATH = "./data"
# Load models
text_tokenizer = Tokenizer.from_file(TOKENIZER_PATH)
vqvae = VQVAE.from_pretrained(VQVAE_PATH)
fm_model = FM.from_pretrained(FM_MODEL_PATH).eval().to(DEVICE)
# Generation configurations
cond_domains = ["caption", "metadata"]
target_domains = ["tok_dinov2_global"]
tokens_per_target = [16]
generation_config = {
"autoregression_schemes": ["roar"],
"decoding_steps": [1],
"token_decoding_schedules": ["linear"],
"temps": [2.0],
"temp_schedules": ["onex:0.5:0.5"],
"cfg_scales": [1.0],
"cfg_schedules": ["constant"],
"cfg_grow_conditioning": True,
}
top_p, top_k = 0.8, 0.0
schedule = build_chained_generation_schedules(
cond_domains=cond_domains,
target_domains=target_domains,
tokens_per_target=tokens_per_target,
**generation_config,
)
sampler = GenerationSampler(fm_model)
class HuggingFaceImageDataset(Dataset):
def __init__(self, dataset_name, split="train", img_sz=224):
self.dataset = load_dataset(dataset_name, split=split)
self.tfms = A.Compose([
A.SmallestMaxSize(img_sz)
])
def __len__(self):
return len(self.dataset)
def __getitem__(self, idx):
img = self.dataset[idx]['image']
img = np.array(img)
img = self.tfms(image=img)["image"]
return Image.fromarray(img)
# Usage
dataset = HuggingFaceImageDataset("aroraaman/4m-21-demo")
def load_image_embeddings():
# Download the file
file_path = hf_hub_download(repo_id="aroraaman/img-tensor", filename="image_emb.pt")
# Load the tensor
image_embeddings = torch.load(file_path)
return image_embeddings
# Use the embeddings in your app
image_embeddings = load_image_embeddings()
image_embeddings = image_embeddings.to(DEVICE)
image_embeddings.shape
print(image_embeddings.shape)
def get_similar_images(caption, brightness, num_items):
batched_sample = {}
for target_mod, ntoks in zip(target_domains, tokens_per_target):
batched_sample = init_empty_target_modality(
batched_sample, MODALITY_INFO, target_mod, 1, ntoks, DEVICE
)
metadata = f"v1=6 v0={num_items} v1=10 v0={brightness}"
print(metadata)
batched_sample = custom_text(
batched_sample,
input_text=caption,
eos_token="[EOS]",
key="caption",
device=DEVICE,
text_tokenizer=text_tokenizer,
)
batched_sample = custom_text(
batched_sample,
input_text=metadata,
eos_token="[EOS]",
key="metadata",
device=DEVICE,
text_tokenizer=text_tokenizer,
)
out_dict = sampler.generate(
batched_sample,
schedule,
text_tokenizer=text_tokenizer,
verbose=True,
seed=0,
top_p=top_p,
top_k=top_k,
)
with torch.no_grad():
dec_dict = decode_dict(
out_dict,
{"tok_dinov2_global": vqvae.to(DEVICE)},
text_tokenizer,
image_size=IMG_SIZE,
patch_size=16,
decoding_steps=1,
)
combined_features = dec_dict["tok_dinov2_global"]
similarities = torch.nn.functional.cosine_similarity(
combined_features, image_embeddings
)
top_indices = similarities.argsort(descending=True)[:1]
print(top_indices, similarities[top_indices])
return [dataset[int(i)] for i in top_indices.cpu().numpy()]
# Gradio interface
with gr.Blocks() as demo:
gr.Markdown("# Image Retrieval using 4M-21: An Any-to-Any Vision Model")
gr.Markdown("""
This app demonstrates image retrieval using the 4M-21 model, an any-to-any vision model.
Enter a caption description, adjust the brightness, and specify the number of items to retrieve similar images.
The retrieval dataset for this demo is available at: https://huggingface.co/datasets/aroraaman/4m-21-demo
""")
with gr.Row():
with gr.Column(scale=1):
caption = gr.Textbox(
label="Caption Description", placeholder="Enter image description..."
)
brightness = gr.Slider(
minimum=0, maximum=255, value=5, step=1,
label="Brightness", info="Adjust image brightness (0-255)"
)
num_items = gr.Slider(
minimum=0, maximum=50, value=5, step=1,
label="Number of Items", info="Number of COCO instances in image (0-50)"
)
with gr.Column(scale=1):
output_images = gr.Gallery(
label="Retrieved Images",
show_label=True,
elem_id="gallery",
columns=2,
rows=2,
height=512,
)
submit_btn = gr.Button("Retrieve Most Similar Image")
submit_btn.click(
fn=get_similar_images,
inputs=[caption, brightness, num_items],
outputs=output_images,
)
# Add examples
gr.Examples(
examples=[
["swimming pool", 27, 7],
["swimming pool", 255, 7],
["dining room", 22, 7],
["dining room", 5, 7],
["dining room", 5, 46]
],
inputs=[caption, brightness, num_items]
)
if __name__ == "__main__":
demo.launch()
|