File size: 20,321 Bytes
3424266
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
# Copyright 2024 EPFL and Apple Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

# DISCLAIMER: This code is strongly influenced by https://github.com/lucidrains/vector-quantize-pytorch

import torch
from torch import nn, einsum
import torch.nn.functional as F
import torch.distributed as distributed
from torch.cuda.amp import autocast

from einops import rearrange, repeat
from contextlib import contextmanager

def exists(val):
    return val is not None

def default(val, d):
    return val if exists(val) else d

def noop(*args, **kwargs):
    pass

def l2norm(t):
    return F.normalize(t, p = 2, dim = -1)

def log(t, eps = 1e-20):
    return torch.log(t.clamp(min = eps))

def uniform_init(*shape):
    t = torch.empty(shape)
    nn.init.kaiming_uniform_(t)
    return t

def gumbel_noise(t):
    noise = torch.zeros_like(t).uniform_(0, 1)
    return -log(-log(noise))

def gumbel_sample(t, temperature = 1., dim = -1):
    if temperature == 0:
        return t.argmax(dim = dim)

    return ((t / temperature) + gumbel_noise(t)).argmax(dim = dim)

def ema_inplace(moving_avg, new, decay):
    moving_avg.data.mul_(decay).add_(new, alpha = (1 - decay))

def laplace_smoothing(x, n_categories, eps = 1e-5):
    return (x + eps) / (x.sum() + n_categories * eps)

def sample_vectors(samples, num):
    num_samples, device = samples.shape[0], samples.device

    if num_samples >= num:
        indices = torch.randperm(num_samples, device = device)[:num]
    else:
        indices = torch.randint(0, num_samples, (num,), device = device)

    return samples[indices]

def pad_shape(shape, size, dim = 0):
    return [size if i == dim else s for i, s in enumerate(shape)]

def sample_multinomial(total_count, probs):
    device = probs.device
    probs = probs.cpu()

    total_count = probs.new_full((), total_count)
    remainder = probs.new_ones(())
    sample = torch.empty_like(probs, dtype = torch.long)

    for i, p in enumerate(probs):
        s = torch.binomial(total_count, p / remainder)
        sample[i] = s
        total_count -= s
        remainder -= p

    return sample.to(device)

def all_gather_sizes(x, dim):
    size = torch.tensor(x.shape[dim], dtype = torch.long, device = x.device)
    all_sizes = [torch.empty_like(size) for _ in range(distributed.get_world_size())]
    distributed.all_gather(all_sizes, size)

    return torch.stack(all_sizes)

def all_gather_variably_sized(x, sizes, dim = 0):
    rank = distributed.get_rank()
    all_x = []

    for i, size in enumerate(sizes):
        t = x if i == rank else x.new_empty(pad_shape(x.shape, size, dim))
        distributed.broadcast(t, src = i, async_op = True)
        all_x.append(t)

    distributed.barrier()
    return all_x

def sample_vectors_distributed(local_samples, num):
    rank = distributed.get_rank()
    all_num_samples = all_gather_sizes(local_samples, dim = 0)

    if rank == 0:
        samples_per_rank = sample_multinomial(num, all_num_samples / all_num_samples.sum())
    else:
        samples_per_rank = torch.empty_like(all_num_samples)

    distributed.broadcast(samples_per_rank, src = 0)
    samples_per_rank = samples_per_rank.tolist()

    local_samples = sample_vectors(local_samples, samples_per_rank[rank])
    all_samples = all_gather_variably_sized(local_samples, samples_per_rank, dim = 0)
    return torch.cat(all_samples, dim = 0)

def add_noise(x, eps=1e-10):
    return x + torch.randn_like(x) * eps

def add_noise_distributed(x, eps=1e-10):
    if distributed.get_rank() == 0:
        randn_noise = torch.randn_like(x)
    else:
        randn_noise = torch.empty_like(x)
    distributed.broadcast(randn_noise, src = 0)
    return x + randn_noise * eps

def kmeans(samples, num_clusters, num_iters = 10, use_cosine_sim = False, 
           sample_fn = sample_vectors, all_reduce_fn = noop):
    dim, dtype, device = samples.shape[-1], samples.dtype, samples.device
    means = sample_fn(samples, num_clusters)

    for _ in range(num_iters):
        if use_cosine_sim:
            dists = samples @ means.t()
        else:
            diffs = rearrange(samples, 'n d -> n () d') \
                    - rearrange(means, 'c d -> () c d')
            dists = -(diffs ** 2).sum(dim = -1)

        buckets = torch.argmax(dists, dim = -1)
        bins = torch.bincount(buckets, minlength = num_clusters)
        all_reduce_fn(bins)

        zero_mask = bins == 0
        bins_min_clamped = bins.masked_fill(zero_mask, 1)

        new_means = buckets.new_zeros(num_clusters, dim, dtype = dtype)
        new_means.scatter_add_(0, repeat(buckets, 'n -> n d', d = dim), samples)
        new_means = new_means / bins_min_clamped[..., None]
        all_reduce_fn(new_means)

        if use_cosine_sim:
            new_means = l2norm(new_means)

        means = torch.where(zero_mask[..., None], means, new_means)

    return means, bins

# regularization losses

def orthgonal_loss_fn(t):
    # eq (2) from https://arxiv.org/abs/2112.00384
    n = t.shape[0]
    normed_codes = l2norm(t)
    identity = torch.eye(n, device = t.device)
    cosine_sim = einsum('i d, j d -> i j', normed_codes, normed_codes)
    return ((cosine_sim - identity) ** 2).sum() / (n ** 2)

# distance types

class EuclideanCodebook(nn.Module):
    def __init__(
        self,
        dim,
        codebook_size,
        kmeans_init = False,
        kmeans_iters = 10,
        decay = 0.8,
        eps = 1e-5,
        threshold_ema_dead_code = 2,
        code_replacement_policy = 'batch_random', # batch_random or linde_buzo_gray
        use_ddp = False,
        learnable_codebook = False,
        sample_codebook_temp = 0
    ):
        super().__init__()
        self.decay = decay
        init_fn = uniform_init if not kmeans_init else torch.zeros
        embed = init_fn(codebook_size, dim)

        self.codebook_size = codebook_size
        self.kmeans_iters = kmeans_iters
        self.eps = eps
        self.threshold_ema_dead_code = threshold_ema_dead_code
        self.code_replacement_policy = code_replacement_policy
        self.sample_codebook_temp = sample_codebook_temp

        self.sample_fn = sample_vectors_distributed if use_ddp else sample_vectors
        self.all_reduce_fn = distributed.all_reduce if use_ddp else noop
        self.add_noise_fn = add_noise_distributed if use_ddp else add_noise

        self.register_buffer('initted', torch.Tensor([not kmeans_init]))
        self.register_buffer('cluster_size', torch.zeros(codebook_size))
        self.register_buffer('embed_avg', embed.clone())

        self.learnable_codebook = learnable_codebook
        if learnable_codebook:
            self.embed = nn.Parameter(embed)
        else:
            self.register_buffer('embed', embed)

    @torch.jit.ignore
    def init_embed_(self, data):
        if self.initted:
            return

        embed, cluster_size = kmeans(data, self.codebook_size, self.kmeans_iters,
                                     sample_fn = self.sample_fn, all_reduce_fn = self.all_reduce_fn)

        self.embed.data.copy_(embed)
        self.embed_avg.data.copy_(embed.clone())
        self.cluster_size.data.copy_(cluster_size)
        self.initted.data.copy_(torch.Tensor([True]))

    def replace_batch_random(self, samples, mask):
        samples = l2norm(samples)
        self.embed.data[mask] = self.sample_fn(samples, mask.sum().item())

    def replace_linde_buzo_gray(self, mask):
        num_unused = mask.sum()
        most_used_idxs = self.cluster_size.argsort(descending=True)[:num_unused]
        most_used_codes = self.embed.data[most_used_idxs]
        self.embed.data[mask] = l2norm(self.add_noise_fn(most_used_codes))

    def expire_codes_(self, batch_samples):
        if self.threshold_ema_dead_code == 0:
            return

        expired_codes = self.cluster_size < self.threshold_ema_dead_code
        if not torch.any(expired_codes):
            return

        if self.code_replacement_policy == 'batch_random':
            # Replace dead codes by random latents from encoder
            batch_samples = rearrange(batch_samples, '... d -> (...) d')
            self.replace_batch_random(batch_samples, mask = expired_codes)
        elif self.code_replacement_policy == 'linde_buzo_gray':
            # Replace dead codes by most used codes + some noise (Linde-Buzo-Gray splitting algorithm)
            self.replace_linde_buzo_gray(mask = expired_codes)
        else:
            raise ValueError(f'{self.code_replacement_policy} is not a valid dead code replacement strategy.')

    @autocast(enabled = False)
    def forward(self, x):
        x = x.float()

        shape, dtype = x.shape, x.dtype
        flatten = rearrange(x, '... d -> (...) d')

        self.init_embed_(flatten)

        embed = self.embed if not self.learnable_codebook else self.embed.detach()
        embed = self.embed.t()

        dist = -(
            flatten.pow(2).sum(1, keepdim=True)
            - 2 * flatten @ embed
            + embed.pow(2).sum(0, keepdim=True)
        )

        embed_ind = gumbel_sample(dist, dim = -1, temperature = self.sample_codebook_temp)
        embed_onehot = F.one_hot(embed_ind, self.codebook_size).type(dtype)
        embed_ind = embed_ind.view(*shape[:-1])
        quantize = F.embedding(embed_ind, self.embed)

        if self.training:
            cluster_size = embed_onehot.sum(0)
            self.all_reduce_fn(cluster_size)

            ema_inplace(self.cluster_size, cluster_size, self.decay)

            embed_sum = flatten.t() @ embed_onehot
            self.all_reduce_fn(embed_sum)

            ema_inplace(self.embed_avg, embed_sum.t(), self.decay)
            cluster_size = laplace_smoothing(self.cluster_size, self.codebook_size, self.eps) * self.cluster_size.sum()
            embed_normalized = self.embed_avg / cluster_size.unsqueeze(1)
            self.embed.data.copy_(embed_normalized)
            self.expire_codes_(x)

        return quantize, embed_ind

class CosineSimCodebook(nn.Module):
    def __init__(
        self,
        dim,
        codebook_size,
        kmeans_init = False,
        kmeans_iters = 10,
        decay = 0.8,
        eps = 1e-5,
        threshold_ema_dead_code = 2,
        code_replacement_policy = 'batch_random', # batch_random or linde_buzo_gray
        use_ddp = False,
        learnable_codebook = False,
        sample_codebook_temp = 0.
    ):
        super().__init__()
        self.decay = decay

        if not kmeans_init:
            embed = l2norm(uniform_init(codebook_size, dim))
        else:
            embed = torch.zeros(codebook_size, dim)

        self.codebook_size = codebook_size
        self.kmeans_iters = kmeans_iters
        self.eps = eps
        self.threshold_ema_dead_code = threshold_ema_dead_code
        self.code_replacement_policy = code_replacement_policy
        self.sample_codebook_temp = sample_codebook_temp

        self.sample_fn = sample_vectors_distributed if use_ddp else sample_vectors
        self.all_reduce_fn = distributed.all_reduce if use_ddp else noop
        self.add_noise_fn = add_noise_distributed if use_ddp else add_noise

        self.register_buffer('initted', torch.Tensor([not kmeans_init]))
        self.register_buffer('cluster_size', torch.zeros(codebook_size))

        self.learnable_codebook = learnable_codebook
        if learnable_codebook:
            self.embed = nn.Parameter(embed)
        else:
            self.register_buffer('embed', embed)

        self.counter = 0

    @torch.jit.ignore
    def init_embed_(self, data):
        if self.initted:
            return

        embed, cluster_size = kmeans(data, self.codebook_size, self.kmeans_iters, use_cosine_sim = True,
                                     sample_fn = self.sample_fn, all_reduce_fn = self.all_reduce_fn)

        self.embed.data.copy_(embed)
        self.cluster_size.data.copy_(cluster_size)
        self.initted.data.copy_(torch.Tensor([True]))

    def replace_batch_random(self, samples, mask):
        samples = l2norm(samples)
        self.embed.data[mask] = self.sample_fn(samples, mask.sum().item())

    def replace_linde_buzo_gray(self, mask):
        num_unused = mask.sum()
        most_used_idxs = self.cluster_size.argsort(descending=True)[:num_unused]
        most_used_codes = self.embed.data[most_used_idxs]
        self.embed.data[mask] = l2norm(self.add_noise_fn(most_used_codes))

    def expire_codes_(self, batch_samples):
        if self.threshold_ema_dead_code == 0:
            return

        expired_codes = self.cluster_size < self.threshold_ema_dead_code
        if not torch.any(expired_codes):
            return

        if self.code_replacement_policy == 'batch_random':
            # Replace dead codes by random latents from encoder
            batch_samples = rearrange(batch_samples, '... d -> (...) d')
            self.replace_batch_random(batch_samples, mask = expired_codes)
        elif self.code_replacement_policy == 'linde_buzo_gray':
            # Replace dead codes by most used codes + some noise (Linde-Buzo-Gray splitting algorithm)
            self.replace_linde_buzo_gray(mask = expired_codes)
        else:
            raise ValueError(f'{self.code_replacement_policy} is not a valid dead code replacement strategy.')

    @autocast(enabled = False)
    def forward(self, x):
        x = x.float()

        shape, dtype = x.shape, x.dtype

        flatten = rearrange(x, '... d -> (...) d')
        flatten = l2norm(flatten)

        self.init_embed_(flatten)

        embed = self.embed if not self.learnable_codebook else self.embed.detach()
        embed = l2norm(embed)

        dist = flatten @ embed.t()
        embed_ind = gumbel_sample(dist, dim = -1, temperature = self.sample_codebook_temp)
        embed_onehot = F.one_hot(embed_ind, self.codebook_size).type(dtype)
        embed_ind = embed_ind.view(*shape[:-1])

        quantize = F.embedding(embed_ind, self.embed)

        if self.training:
            bins = embed_onehot.sum(0)
            self.all_reduce_fn(bins)

            ema_inplace(self.cluster_size, bins, self.decay)

            zero_mask = (bins == 0)
            bins = bins.masked_fill(zero_mask, 1.)

            embed_sum = flatten.t() @ embed_onehot
            self.all_reduce_fn(embed_sum)

            embed_normalized = (embed_sum / bins.unsqueeze(0)).t()
            embed_normalized = l2norm(embed_normalized)
            embed_normalized = torch.where(zero_mask[..., None], embed,
                                           embed_normalized)
            ema_inplace(self.embed, embed_normalized, self.decay)
            self.expire_codes_(x)

        return quantize, embed_ind

# main class

class VectorQuantize(nn.Module):
    def __init__(
        self,
        dim,
        codebook_size,
        codebook_dim = None,
        heads = 1,
        decay = 0.8,
        eps = 1e-5,
        kmeans_init = False,
        kmeans_iters = 10,
        use_cosine_sim = False,
        threshold_ema_dead_code = 0,
        code_replacement_policy = 'batch_random', # batch_random or linde_buzo_gray
        channel_last = False,
        accept_image_fmap = True,
        commitment_weight = 1.,
        orthogonal_reg_weight = 0.,
        orthogonal_reg_active_codes_only = False,
        orthogonal_reg_max_codes = None,
        sample_codebook_temp = 0.,
        sync_codebook = False,
        norm_latents = False,
    ):
        super().__init__()
        self.heads = heads
        codebook_dim = default(codebook_dim, dim)
        codebook_input_dim = codebook_dim * heads

        requires_projection = codebook_input_dim != dim
        self.project_in = nn.Linear(dim, codebook_input_dim) if requires_projection else nn.Identity()
        self.project_out = nn.Linear(codebook_input_dim, dim) if requires_projection else nn.Identity()

        self.eps = eps
        self.commitment_weight = commitment_weight
        self.norm_latents = norm_latents

        has_codebook_orthogonal_loss = orthogonal_reg_weight > 0
        self.orthogonal_reg_weight = orthogonal_reg_weight
        self.orthogonal_reg_active_codes_only = orthogonal_reg_active_codes_only
        self.orthogonal_reg_max_codes = orthogonal_reg_max_codes

        codebook_class = EuclideanCodebook if not use_cosine_sim else CosineSimCodebook

        self._codebook = codebook_class(
            dim = codebook_dim,
            codebook_size = codebook_size,
            kmeans_init = kmeans_init,
            kmeans_iters = kmeans_iters,
            decay = decay,
            eps = eps,
            threshold_ema_dead_code = threshold_ema_dead_code,
            code_replacement_policy = code_replacement_policy,
            use_ddp = sync_codebook,
            learnable_codebook = has_codebook_orthogonal_loss,
            sample_codebook_temp = sample_codebook_temp
        )

        self.codebook_size = codebook_size

        self.accept_image_fmap = accept_image_fmap
        self.channel_last = channel_last

    @property
    def codebook(self):
        return self._codebook.embed

    def indices_to_embedding(self, indices):
        embedding = F.embedding(indices, self.codebook)
        embedding = rearrange(embedding, 'b h w c -> b c h w')
        return embedding

    def forward(self, x):
        shape, device, heads, is_multiheaded, codebook_size = x.shape, x.device, self.heads, self.heads > 1, self.codebook_size

        need_transpose = not self.channel_last and not self.accept_image_fmap

        if self.accept_image_fmap:
            height, width = x.shape[-2:]
            x = rearrange(x, 'b c h w -> b (h w) c')

        if need_transpose:
            x = rearrange(x, 'b d n -> b n d')

        x = self.project_in(x)

        if is_multiheaded:
            x = rearrange(x, 'b n (h d) -> (b h) n d', h = heads)

        if self.norm_latents:
            # If specified, normalize encoder latents for computing commitment loss
            x = l2norm(x)

        quantize, embed_ind = self._codebook(x)

        if self.training:
            quantize = x + (quantize - x).detach()

        loss = torch.tensor([0.], device = device, requires_grad = self.training)

        if self.training:
            if self.commitment_weight > 0:
                commit_loss = F.mse_loss(quantize.detach(), x)
                loss = loss + commit_loss * self.commitment_weight

            if self.orthogonal_reg_weight > 0:
                codebook = self.codebook

                if self.orthogonal_reg_active_codes_only:
                    # only calculate orthogonal loss for the activated codes for this batch
                    unique_code_ids = torch.unique(embed_ind)
                    codebook = codebook[unique_code_ids]

                num_codes = codebook.shape[0]
                if exists(self.orthogonal_reg_max_codes) and num_codes > self.orthogonal_reg_max_codes:
                    rand_ids = torch.randperm(num_codes, device = device)[:self.orthogonal_reg_max_codes]
                    codebook = codebook[rand_ids]

                orthogonal_reg_loss = orthgonal_loss_fn(codebook)
                loss = loss + orthogonal_reg_loss * self.orthogonal_reg_weight

        if is_multiheaded:
            quantize = rearrange(quantize, '(b h) n d -> b n (h d)', h = heads)
            embed_ind = rearrange(embed_ind, '(b h) n -> b n h', h = heads)

        quantize = self.project_out(quantize)

        if need_transpose:
            quantize = rearrange(quantize, 'b n d -> b d n')

        if self.accept_image_fmap:
            quantize = rearrange(quantize, 'b (h w) c -> b c h w', h = height, w = width)
            embed_ind = rearrange(embed_ind, 'b (h w) ... -> b h w ...', h = height, w = width)
            if is_multiheaded:
                embed_ind = rearrange(embed_ind, 'b h w ... -> b ... h w')

        return quantize, loss, embed_ind