File size: 6,180 Bytes
3424266
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
# Copyright 2024 EPFL and Apple Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import Optional, Tuple, Union
import torch
from diffusers import DiffusionPipeline
from diffusers.schedulers.scheduling_utils import SchedulerMixin
from tqdm import tqdm

from fourm.utils import to_2tuple


def rescale_noise_cfg(noise_cfg, noise_pred_conditional, guidance_rescale=0.0):
    """
    Rescale `noise_cfg` according to `guidance_rescale`. Based on findings of [Common Diffusion Noise Schedules and
    Sample Steps are Flawed](https://arxiv.org/pdf/2305.08891.pdf). See Section 3.4
    """
    std_text = noise_pred_conditional.std(dim=list(range(1, noise_pred_conditional.ndim)), keepdim=True)
    std_cfg = noise_cfg.std(dim=list(range(1, noise_cfg.ndim)), keepdim=True)
    # rescale the results from guidance (fixes overexposure)
    noise_pred_rescaled = noise_cfg * (std_text / std_cfg)
    # mix with the original results from guidance by factor guidance_rescale to avoid "plain looking" images
    noise_cfg = guidance_rescale * noise_pred_rescaled + (1 - guidance_rescale) * noise_cfg
    return noise_cfg


class PipelineCond(DiffusionPipeline):
    """Pipeline for conditional image generation.

    This model inherits from `DiffusionPipeline`. Check the superclass documentation for the generic methods
    implemented for all pipelines (downloading, saving, running on a particular device, etc.).

    Args:
        model: The conditional diffusion model.
        scheduler: A diffusion scheduler, e.g. see scheduling_ddpm.py
    """
    def __init__(self, model: torch.nn.Module, scheduler: SchedulerMixin):
        super().__init__()
        self.register_modules(model=model, scheduler=scheduler)

    @torch.no_grad()
    def __call__(self, 
                 cond: torch.Tensor, 
                 generator: Optional[torch.Generator] = None, 
                 timesteps: Optional[int] = None,
                 guidance_scale: float = 0.0, 
                 guidance_rescale: float = 0.0,
                 image_size: Optional[Union[Tuple[int, int], int]] = None, 
                 verbose: bool = True,
                 scheduler_timesteps_mode: str = 'trailing',
                 orig_res: Optional[Union[torch.LongTensor, Tuple[int, int]]] = None,
                 **kwargs) -> torch.Tensor:
        """The call function to the pipeline for conditional image generation.

        Args:
            cond: The conditional input to the model.
            generator: A torch.Generator to make generation deterministic.
            timesteps: The number of denoising steps. More denoising steps usually lead to a higher 
              quality image at the expense of slower inference. Defaults to the number of training 
              timesteps if not given.
            guidance_scale: The scale of the classifier-free guidance. If set to 0.0, no guidance is used.
            guidance_rescale: Rescaling factor to fix the variance when using guidance scaling.
            image_size: The size of the image to generate. If not given, the default training size 
              of the model is used.
            verbose: Whether to show a progress bar.
            scheduler_timesteps_mode: The mode to use for DDIMScheduler. One of `trailing`, `linspace`, 
              `leading`. See https://arxiv.org/abs/2305.08891 for more details.
            orig_res: The original resolution of the image to condition the diffusion on. Ignored if None.
              See SDXL https://arxiv.org/abs/2307.01952 for more details.

        Returns:
            The generated image.
        """

        timesteps = self.scheduler.config.num_train_timesteps if timesteps is None else timesteps
        batch_size, _, _, _ = cond.shape
        
        # Sample gaussian noise to begin loop
        image_size = self.model.sample_size if image_size is None else image_size
        image_size = to_2tuple(image_size)
        image = torch.randn(
            (batch_size, self.model.in_channels, image_size[0], image_size[1]),
            generator=generator,
        )
        image = image.to(self.model.device)

        do_cfg = callable(guidance_scale) or  guidance_scale > 1.0

        # Set step values
        self.scheduler.set_timesteps(timesteps, mode=scheduler_timesteps_mode)

        if verbose:
            pbar = tqdm(total=len(self.scheduler.timesteps))

        for t in self.scheduler.timesteps:
            # 1. Predict noise model_output
            model_output = self.model(image, t, cond, orig_res=orig_res, **kwargs)
            
            if do_cfg:
                model_output_uncond = self.model(image, t, cond, unconditional=True, **kwargs) # TODO: is there a better way to get unconditional output?

                if callable(guidance_scale):
                    guidance_scale_value = guidance_scale(t/self.scheduler.config.num_train_timesteps)
                else:
                    guidance_scale_value = guidance_scale
                model_output_cfg = model_output_uncond + guidance_scale_value * (model_output - model_output_uncond)

                if guidance_rescale > 0.0:
                    model_output = rescale_noise_cfg(model_output_cfg, model_output, guidance_rescale=guidance_rescale)
                else:
                    model_output = model_output_cfg

            # 2. Compute previous image: x_t -> t_t-1
            with torch.cuda.amp.autocast(enabled=False):
                image = self.scheduler.step(model_output.float(), t, image, generator=generator).prev_sample

            if verbose:
                pbar.update()
        if verbose:
            pbar.close()
            
        return image