Spaces:
Runtime error
Runtime error
# Copyright 2024 EPFL and Apple Inc. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
from functools import partial | |
from typing import Dict, List, Optional, Tuple, Union | |
import torch | |
import torch.nn as nn | |
from einops import repeat | |
from .fm_utils import build_1d_sincos_posemb, build_2d_sincos_posemb, pair | |
class SequenceDecoderEmbedding(nn.Module): | |
"""Embedding module for sequence inputs, like captions or a sequence of objects. | |
Args: | |
vocab_size: Vocabulary size | |
max_length: Maximum number of tokens in the sequence | |
dim_tokens: Dimension of output tokens. Can be set using init method. | |
sincos_pos_emb: Set to True (default) to use fixed 1D sin-cos positional embeddings | |
padding_idx: Padding index for word embedding | |
share_embedding: Set to True to share input and output embedding weights | |
""" | |
def __init__(self, | |
vocab_size: int, | |
max_length: int, | |
dim_tokens: Optional[int] = None, | |
sincos_pos_emb: bool = True, | |
max_sincos_pos_emb: int = 512, | |
padding_idx: int = 0, | |
share_embedding: bool = True, | |
**kwargs): | |
super().__init__() | |
self.vocab_size = vocab_size | |
self.max_length = max_length | |
self.dim_tokens = dim_tokens | |
self.sincos_pos_emb = sincos_pos_emb | |
self.padding_idx = padding_idx | |
self.max_sincos_pos_emb = max_sincos_pos_emb | |
self.share_embedding = share_embedding | |
if self.dim_tokens is not None: | |
self.init(dim_tokens=dim_tokens) | |
def init(self, dim_tokens: int = 768, init_std=0.02): | |
""" | |
Initialize parts of embedding module that are dependent on dimension of tokens. | |
Should be called when setting up FourM. | |
Args: | |
dim_tokens: Dimension of tokens | |
init_std: Standard deviation of init | |
""" | |
self.dim_tokens = dim_tokens | |
# Task embedding identifying from which task a given token comes from | |
# Fixed-size positional embeddings. Can be interpolated to different input sizes | |
if self.sincos_pos_emb: | |
if self.max_length > self.max_sincos_pos_emb: | |
raise ValueError(f"Max length ({self.max_length}) is greater than the number of posembs ({self.max_sincos_pos_emb}") | |
# Get all posembs, than truncate up to max length | |
pos_emb = build_1d_sincos_posemb(max_len=self.max_sincos_pos_emb, embed_dim=self.dim_tokens)[:self.max_length] | |
self.register_buffer("pos_emb", pos_emb) | |
else: | |
self.pos_emb = nn.Parameter(torch.zeros(1, self.max_length, self.dim_tokens)) | |
nn.init.normal_(self.pos_emb, std=init_std) | |
self.mod_emb = nn.Parameter(torch.zeros(1, 1, self.dim_tokens)) | |
nn.init.normal_(self.mod_emb, std=init_std) | |
# Token embedding | |
self.token_emb = nn.Embedding(num_embeddings=self.vocab_size, embedding_dim=self.dim_tokens, padding_idx=self.padding_idx) | |
# Output projection layer | |
self.to_logits = nn.Linear(self.dim_tokens, self.vocab_size, bias=False) | |
if self.share_embedding: | |
# Share input and output embedding weights | |
self.to_logits.weight = self.token_emb.weight | |
def no_weight_decay(self): | |
return set() | |
def forward_embed(self, d: Dict[str, torch.Tensor]) -> Dict[str, torch.Tensor]: | |
""" | |
Forward pass through embedding module, transforming sequence of ids to sequence of embeddings. | |
Creates corresponding modality and positional embeddings and adds them to the dict. | |
Args: | |
d (Dict[str, torch.Tensor]): Modality dict, with at least the following keys: | |
- 'tensor' (torch.Tensor): Token sequence for each batch. Shape (B, L) where B is the batch size and L is the sequence length. | |
- 'target_mask' (torch.Tensor): Mask for valid tokens in the target sequence (set to 0 for valid tokens and 1 otherwise). Shape (B, L). | |
Returns: | |
Dict[str, torch.Tensor]: Modality dict with added keys: | |
- 'x' (torch.Tensor): Embedded token sequence. Shape (B, L, D) where D is the embedding dimension. | |
- 'emb' (torch.Tensor): Sum of positional and modality embeddings for the target sequence. Shape (B, L, D). | |
- 'ids' (torch.Tensor): Original token sequence from input dict. Shape (B, L). | |
""" | |
ids = d['tensor'] | |
B = ids.shape[0] | |
assert self.dim_tokens is not None, 'Need to call init(dim_tokens) function first' | |
# Map to embedding | |
x = self.token_emb(ids) | |
expanded_pos_emb = repeat(self.pos_emb, "() n d -> b n d", b=B) | |
# Target pos encoding | |
target_mask = d['target_mask'] | |
target_pos_id = (~target_mask).int().cumsum(dim=1) - 1 | |
target_pos_id[target_mask] = 0 | |
# Sometimes target sequence is over max length, it will be truncated in decoder | |
target_pos_id[target_pos_id >= self.max_length] = 0 | |
target_pos_emb = torch.gather(expanded_pos_emb, dim=1, index=repeat(target_pos_id, "b n -> b n d", d=expanded_pos_emb.shape[2])) | |
target_pos_emb[target_mask] = 0 | |
x_emb = target_pos_emb + self.mod_emb | |
d['x'] = x | |
d['emb'] = x_emb | |
d['ids'] = d['tensor'] | |
return d | |
def forward_logits(self, x: torch.Tensor) -> torch.Tensor: | |
""" | |
Forward pass through output projection layer, transforming sequence of embeddings to logits. | |
Args: | |
x (torch.Tensor): Output tokens from the decoder. Shape (B, M, D) | |
Returns: | |
torch.Tensor: Logits for each token in the sequence. Shape (B, M, V) | |
""" | |
logits = self.to_logits(x) | |
return logits | |
class ImageTokenDecoderEmbedding(nn.Module): | |
"""Embedding module for tokenized spatial inputs. | |
Args: | |
vocab_size: Vocabulary size | |
patch_size: Int or tuple of the patch size over the full image size. | |
dim_tokens: Dimension of output tokens. Can be set using init method. | |
sincos_pos_emb: Set to True (default) to use fixed 2D sin-cos positional embeddings | |
image_size: Default image size. Used to initialize size of positional embeddings. | |
share_embedding: Set to True to share input and output embedding weights | |
""" | |
def __init__(self, | |
vocab_size: int, | |
patch_size: Union[int, Tuple[int,int]] = 16, | |
dim_tokens: Optional[int] = None, | |
sincos_pos_emb: bool = True, | |
image_size: Union[int, Tuple[int]] = 224, | |
share_embedding: bool = True, | |
**kwargs): | |
super().__init__() | |
self.vocab_size = vocab_size | |
self.patch_size = pair(patch_size) | |
self.dim_tokens = dim_tokens | |
self.sincos_pos_emb = sincos_pos_emb | |
self.image_size = pair(image_size) | |
self.num_patches = (self.image_size[0] // self.patch_size[0]) * (self.image_size[1] // self.patch_size[1]) | |
self.share_embedding = share_embedding | |
if self.dim_tokens is not None: | |
self.init(dim_tokens=dim_tokens) | |
def init(self, dim_tokens: int = 768, init_std=0.02): | |
""" | |
Initialize parts of module that are dependent on dimension of tokens. | |
Should be called when setting up FourM. | |
Args: | |
dim_tokens: Dimension of tokens | |
init_std: Standard deviation of init | |
""" | |
self.dim_tokens = dim_tokens | |
# Task embedding identifying from which task a given token comes from | |
# Fixed-size positional embeddings. Can be interpolated to different input sizes | |
h_posemb = self.image_size[0] // self.patch_size[0] | |
w_posemb = self.image_size[1] // self.patch_size[1] | |
if self.sincos_pos_emb: | |
pos_emb = build_2d_sincos_posemb(h=h_posemb, w=w_posemb, embed_dim=self.dim_tokens) | |
self.register_buffer("pos_emb", pos_emb) | |
else: | |
self.pos_emb = nn.Parameter(torch.zeros(1, (h_posemb * w_posemb), self.dim_tokens)) | |
nn.init.normal_(self.pos_emb, std=init_std) | |
self.mod_emb = nn.Parameter(torch.zeros(1, 1, self.dim_tokens)) | |
nn.init.normal_(self.mod_emb, std=init_std) | |
# Token embedding (not needed if only masked tokens are given as input, but can be useful to train Token Critic) | |
self.token_emb = nn.Embedding(num_embeddings=self.vocab_size, embedding_dim=self.dim_tokens) | |
# Output projection layer | |
self.to_logits = nn.Linear(self.dim_tokens, self.vocab_size, bias=False) | |
if self.share_embedding: | |
# Share input and output embedding weights | |
self.to_logits.weight = self.token_emb.weight | |
def no_weight_decay(self): | |
return set() | |
def forward_embed(self, d: Dict[str, torch.Tensor]) -> Dict[str, torch.Tensor]: | |
""" | |
Forward pass through the embedding module, transforming tokenized spatial inputs to embeddings. | |
Creates corresponding modality and positional embeddings and adds them to the dict. | |
Args: | |
d (Dict[str, torch.Tensor]): Modality dict, with at least the following key: | |
- 'tensor' (torch.Tensor): Modality tokens for each batch (e.g. from tokenized images). Shape (B, H, W) where B is the batch size, H and W are height and width after tokenization. | |
Returns: | |
Dict[str, torch.Tensor]: Modality dict with added keys: | |
- 'x' (torch.Tensor): Embedded token sequence, which is replaced by mask tokens in the 4M decoder. Shape (B, H*W, D) where D is the embedding dimension. | |
- 'emb' (torch.Tensor): Sum of positional and modality embeddings for the token sequence. Shape (B, H*W, D). | |
- 'ids' (torch.Tensor): Reshaped token sequence from input dict, flattened in the spatial dimensions. Shape (B, H*W). | |
""" | |
ids = d['tensor'] | |
B = ids.shape[0] | |
ids = ids.reshape(B, -1) | |
# Map to embedding | |
x = self.token_emb(ids) | |
# Create positional embedding + modality embedding | |
x_emb = repeat(self.pos_emb + self.mod_emb, '() n d -> b n d', b=B) | |
d['x'] = x | |
d['emb'] = x_emb | |
d['ids'] = ids | |
return d | |
def forward_logits(self, x: torch.Tensor) -> torch.Tensor: | |
""" | |
Forward pass through output projection layer, transforming sequence of embeddings to logits. | |
Args: | |
x (torch.Tensor): Output tokens from the decoder. Shape (B, M, D) | |
Returns: | |
torch.Tensor: Logits for each token in the sequence. Shape (B, M, V) | |
""" | |
logits = self.to_logits(x) | |
return logits | |