aroraaman's picture
Add all of `fourm`
3424266
raw
history blame
65.8 kB
# Copyright 2024 EPFL and Apple Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from collections import defaultdict
from typing import Union, List, Optional
import numpy as np
import torch
from einops import rearrange, repeat
from torch import nn
import torch.nn.functional as F
from fourm.utils import get_sentinel_to_id_mapping, merge_span_masking
from fourm.utils.generation import cosine_schedule, linear_schedule, onex_temp_schedule, linear_temp_schedule, continue_schedule
from tqdm import tqdm
import copy
def empty_img_modality(mod_dict, key):
# Input mask
mod_dict[key]['input_mask'][:] = True
# Target Mask
mod_dict[key]['target_mask'][:] = False
return mod_dict
def empty_seq_modality(mod_dict, key, s1_id=5):
# To create an empty sequence, we suppose an input budget of 1, and the rest assigned to targets
# Input tensor
# Input is [S_1], target is [S_1] ...... [S_2]
# (so [S_1] [S_1] ..... [S_2] when combined)
mod_dict[key]['tensor'][:] = 0
mod_dict[key]['tensor'][:,[0,1]] = s1_id # s1_id is id of the first sentinel token ([S_1])
mod_dict[key]['tensor'][:,-1] = s1_id + 1
# Input mask
# Set first token to input (i.e. 0), rest to target (i.e. 1)
mod_dict[key]['input_mask'][:] = True
mod_dict[key]['input_mask'][:,0] = False
# Target Mask
mod_dict[key]['target_mask'] = ~mod_dict[key]['input_mask']
# Decoder attn mask
# WARNING: Not needed / used in GenerationSampler, where causal mask is enforced
# First token is input, not part of target
mod_dict[key]['decoder_attention_mask'][:] = 1
mod_dict[key]['decoder_attention_mask'][:, 0] = 0
return mod_dict
def empty_seq_emb_modality(mod_dict, key):
# Tensor
mod_dict[key]['tensor'] = torch.zeros_like(mod_dict[key]['tensor'])
# Input mask
mod_dict[key]['input_mask'] = torch.ones_like(mod_dict[key]['input_mask'])
# It is crucial to specify the input mask as such, CFG won't work otherwise!
mod_dict[key]['input_mask'][:, 0] = False
# Target Mask
mod_dict[key]['target_mask'] = torch.ones_like(mod_dict[key]['target_mask'])
# Decoder attn mask
mod_dict[key]['decoder_attention_mask'][:] = False
return mod_dict
def init_empty_target_modality(mod_dict, modality_info, domain, batch_size, num_tokens, device):
"""
Initializes an empty target modality dictionary for a given domain.
Used to initialize target modality dictionaries for generation.
"""
if modality_info[domain]['type'] == 'img':
# Initialize mod dict
mod_dict[domain] = {
'tensor': torch.zeros((batch_size, num_tokens), dtype=torch.int64, device=device),
'input_mask': torch.ones((batch_size, num_tokens), dtype=torch.bool, device=device),
'target_mask': torch.zeros((batch_size, num_tokens), dtype=torch.bool, device=device),
}
# Set it to the correct values
mod_dict = empty_img_modality(mod_dict, domain)
elif modality_info[domain]['type'] in ['seq', 'seq_token', 'seq_emb']:
# Initialize mod dict
num_tokens = max(num_tokens, 2)
mod_dict[domain] = {
'tensor': torch.zeros((batch_size, num_tokens), dtype=torch.int32, device=device),
'input_mask': torch.ones((batch_size, num_tokens), dtype=torch.bool, device=device),
'target_mask': torch.zeros((batch_size, num_tokens), dtype=torch.bool, device=device),
'decoder_attention_mask': torch.zeros((batch_size, num_tokens), dtype=torch.bool, device=device),
}
# Set it to the correct values
if modality_info[domain]['type'] in ['seq', 'seq_token']:
mod_dict = empty_seq_modality(mod_dict, domain)
elif modality_info[domain]['type'] == 'seq_emb':
mod_dict = empty_seq_emb_modality(mod_dict, domain)
else:
raise ValueError()
return mod_dict
def init_full_input_modality(mod_dict, modality_info, domain, device, eos_id=3):
if domain.startswith('rgb'):
batch_size, _, H, W = mod_dict[domain]['tensor'].shape
patch_size = modality_info[domain]['patch_size']
num_tokens = (H // patch_size) * (W // patch_size)
shape = (batch_size, num_tokens)
else:
shape = mod_dict[domain]['tensor'].shape
if 'input_mask' not in mod_dict[domain]:
mod_dict[domain]['input_mask'] = torch.zeros(shape, dtype=torch.bool, device=device)
if 'target_mask' not in mod_dict[domain]:
mod_dict[domain]['target_mask'] = torch.ones(shape, dtype=torch.bool, device=device)
if 'decoder_attention_mask' not in mod_dict[domain]:
mod_dict[domain]['decoder_attention_mask'] = torch.zeros(shape, dtype=torch.bool, device=device)
if modality_info[domain]['type'] == 'img':
mod_dict[domain]['input_mask'][:] = False
mod_dict[domain]['target_mask'][:] = True
elif modality_info[domain]['type'] in ['seq', 'seq_token']:
if eos_id in mod_dict[domain]['tensor']:
eos_idx = torch.where(mod_dict[domain]['tensor'] == eos_id)[1][0].item()
else:
mod_dict[domain]['tensor'][:,0] = eos_id
eos_idx = 0
mod_dict[domain]['input_mask'][:,:eos_idx+1] = False
mod_dict[domain]['input_mask'][:,eos_idx+1:] = True
mod_dict[domain]['target_mask'][:] = True
elif modality_info[domain]['type'] in ['seq_emb']:
# T5 caption has the valid mask saved alongside the embeddings
mod_dict[domain]['input_mask'] = ~mod_dict[domain]['mask_valid']
mod_dict[domain]['target_mask'] = torch.ones_like(mod_dict[domain]['mask_valid'])
mod_dict[domain]['decoder_attention_mask'] = torch.zeros_like(mod_dict[domain]['mask_valid'])
return mod_dict
def custom_text(sample, input_text, eos_token, key, device, text_tokenizer, target_max_len=50, start_token="[S_1]"):
input_ids = text_tokenizer.encode(input_text).ids
input_ids = torch.tensor(input_ids).unsqueeze(0)
target_text = [start_token]
target_text.extend(["[PAD]"] * (target_max_len - 2))
target_text.append(eos_token)
target_text = " ".join(target_text)
target_ids = text_tokenizer.encode(target_text).ids
target_ids = torch.tensor(target_ids).unsqueeze(0)
all_ids = torch.cat([input_ids, target_ids], dim=1)
input_mask = torch.cat([
torch.zeros_like(input_ids, dtype=torch.bool),
torch.ones_like(target_ids, dtype=torch.bool),
], dim=1)
target_mask = torch.cat([
torch.ones_like(input_ids, dtype=torch.bool),
torch.zeros_like(target_ids, dtype=torch.bool),
], dim=1)
sample[key] = {}
sample[key]['tensor'] = all_ids.to(device)
sample[key]['input_mask'] = input_mask.to(device)
sample[key]['target_mask'] = target_mask.to(device)
sample[key]['decoder_attention_mask'] = torch.zeros(all_ids.shape, dtype=torch.bool, device=device)
return sample
def expand_to_batch(mod_dict, batch_size):
for mod, d in mod_dict.items():
for k, v in d.items():
if k in ['tensor', 'input_mask', 'target_mask', 'decoder_attention_mask', 'mask_valid']:
B = v.shape[0]
if B == 1:
mod_dict[mod][k] = repeat(v, "1 ... -> b ...", b=batch_size)
elif B != batch_size:
raise ValueError(f"Invalid batch size: {B} instead of {batch_size}")
return mod_dict
def build_chained_generation_schedules(
cond_domains: List[str],
target_domains: List[str],
tokens_per_target: List[int],
autoregression_schemes: List[str],
decoding_steps: List[int],
token_decoding_schedules: List[str],
temps: List[float],
temp_schedules: List[float],
cfg_scales: List[float],
cfg_schedules: List[str],
cfg_grow_conditioning: bool = False,
modality_info: Optional[dict] = None,
):
"""
Builds a list of chained generation schedules, where each schedule is a tuple of the form:
(target_modality, schema, number of decoded tokens, temperature, guidance_scale, cfg_cond_domains)
Args:
cond_domains: List of conditioning domains
target_domains: List of target domains
tokens_per_target: List of number of tokens to decode for each target domain
autoregression_schemes: List of autoregression schemes for each target domain. maskgit, roar, or autoregressive
decoding_steps: List of number of maskgit steps for each target domain (if applicable)
token_decoding_schedules: List of maskgit token schedules for each target domain (if applicable). cosine or linear
temps: List of starting temperatures for each target domain
temp_schedules: List of temperature schedules for each target domain. linear, constant, or onex:{min_t}:{power}
cfg_scales: List of classifier-free guidance scales for each target domain
cfg_schedules: List of classifier-free guidance schedules for each target domain. constant or cosine
cfg_grow_conditioning: After every completed modality, add them to classifier-free guidance conditioning
modality_info: Dictionary with metadata for each modality, optionally used to verify that the schedule is compatible with the modality
"""
# List of {target_modality, schema, number of decoded tokens, temperature, guidance_scale, cfg_cond_domains} dicts
chained_schedules = []
cond_domains = cond_domains.copy()
for target_idx in range(len(target_domains)):
scheme = autoregression_schemes[target_idx]
target_domain = target_domains[target_idx]
ntoks = tokens_per_target[target_idx]
maskgit_token_schedule_name = token_decoding_schedules[target_idx]
temp = temps[target_idx]
temp_schedule_name = temp_schedules[target_idx]
cfg_scale = cfg_scales[target_idx]
cfg_schedule_name = cfg_schedules[target_idx]
# Auto-regressive (caption, detection, ...)
if scheme == 'autoregressive':
chained_schedules.append({
'target_domain': target_domain,
'scheme': scheme,
'num_tokens': None,
'temperature': temp,
'cfg_scale': cfg_scale,
'cfg_cond_domains': cond_domains.copy()
})
continue
# Use modality info for (optional) assert if provided
if modality_info is not None:
assert modality_info[target_domain]['type'] not in ['seq', 'seq_token'], f'Illegal autoregressive scheme {scheme} for target domain {target_domain}'
# Token schedule
if scheme == 'maskgit':
# MaskGIT token schedule setup
num_steps = decoding_steps[target_idx]
if maskgit_token_schedule_name == 'cosine':
token_schedule = cosine_schedule(num_steps, (ntoks))
elif maskgit_token_schedule_name == 'linear':
token_schedule = linear_schedule(num_steps, (ntoks))
else:
raise ValueError(f'Illegal MaskGIT token schedule {maskgit_token_schedule_name}')
elif scheme == 'roar':
# ROAR token schedule setup (one-by-one, but random order)
num_steps = decoding_steps[target_idx]
token_schedule = linear_schedule(num_steps, ntoks)
else:
raise ValueError(f'Illegal decoding scheme {scheme}')
# Temperature schedule
if temp_schedule_name == 'linear':
temp_schedule = linear_temp_schedule(temp, token_schedule)
elif temp_schedule_name == 'constant':
temp_schedule = temp * np.ones(num_steps)
elif 'onex' in temp_schedule_name:
# onex temperature schedule has to be formatted like onex:{min_t}:{power}
min_t, power = [float(f) for f in temp_schedule_name.split(':')[1:]]
temp_schedule = onex_temp_schedule(max_t=temp, min_t=min_t, token_schedule=token_schedule, power=power)
else:
raise ValueError(f'Illegal temperature schedule {temp_schedule_name}')
# Classifier-free guidance scale schedule
if cfg_schedule_name == 'constant':
if isinstance(cfg_scale, float):
cfg_schedule = cfg_scale * np.ones(num_steps)
elif isinstance(cfg_scale, list):
cfg_schedule = np.array(cfg_scale) * np.ones(num_steps).reshape(-1, 1)
elif cfg_schedule_name == 'cosine':
raise NotImplementedError()
else:
raise ValueError(f'Illegal guidance schedule {cfg_schedule_name}')
# Concatenate schedule for this modality with previous ones
schedule = [
{
'target_domain': target_domain,
'scheme': scheme,
'num_tokens': tok,
'temperature': temp,
'cfg_scale': cfg,
'cfg_cond_domains': cond_domains.copy()
}
for tok, temp, cfg in zip(token_schedule, temp_schedule, cfg_schedule)
]
chained_schedules.extend(schedule)
# Optionally add this new modality to the ones affected by classifier-free guidance
if cfg_grow_conditioning:
cond_domains.append(target_domain)
return chained_schedules
class GenerationSampler(nn.Module):
"""Sampler that wraps a trained 4M model for generation use cases.
Implements standard autoregressive, MaskGIT, and ROAR generation schemes with chaining and weighted guidance."""
def __init__(self, model):
super().__init__()
self.model = model
def top_k_top_p_filtering(self, logits, top_k=0.0, top_p=0.0):
# Compatible with batching
# From https://gist.github.com/thomwolf/1a5a29f6962089e871b94cbd09daf317
if top_k > 0.0:
if isinstance(top_k, int):
k = min(top_k, logits.shape[-1])
elif isinstance(top_k, float):
k = min(int(top_k * logits.shape[-1]), logits.shape[-1])
else:
raise ValueError(f"Invalid value for top_k: {top_k}")
# Remove all tokens with a probability less than the last token of the top-k
indices_to_remove = logits < torch.topk(logits, k)[0][..., -1, None]
logits[indices_to_remove] = float("-inf")
if top_p > 0.0:
sorted_logits, sorted_indices = torch.sort(logits, dim=1, descending=True)
cum_probs = torch.cumsum(F.softmax(sorted_logits, dim=-1), dim=-1)
sorted_indices_to_remove = cum_probs > top_p
# Shift the indices to the right to keep also the first token above the threshold
sorted_indices_to_remove[..., 1:] = sorted_indices_to_remove[..., :-1].clone()
sorted_indices_to_remove[..., 0] = 0
restore_indices = torch.argsort(sorted_indices, dim=-1)
indices_to_remove = torch.gather(sorted_indices_to_remove, dim=-1, index=restore_indices)
logits[indices_to_remove] = float("-inf")
return logits
def sample_tokens(self, logits, temperature=1.0, top_k=0.0, top_p=0.0):
if np.isclose(temperature, 0, atol=1e-10):
samples = torch.argmax(logits, dim=-1)
# Since argmax is used, all sampled_probs will be 1 as we're selecting the max probability
sampled_probs = torch.ones_like(samples, dtype=torch.float32)
else:
filtered_logits = self.top_k_top_p_filtering(logits, top_k, top_p)
probs = F.softmax(filtered_logits / temperature, dim=-1)
samples = torch.multinomial(probs, 1)[:, 0]
sampled_probs = probs[torch.arange(len(samples)), samples]
return samples, sampled_probs
def sample_tokens_batched(self, logits, temperature=1.0, top_k=0.0, top_p=0.0):
if logits.ndim > 2:
B, N = logits.shape[0], logits.shape[1]
logits = rearrange(logits, 'b n v -> (b n) v')
samples, sampled_probs = self.sample_tokens(logits, temperature, top_k, top_p)
samples = rearrange(samples, '(b n) -> b n', b=B, n=N)
sampled_probs = rearrange(sampled_probs, '(b n) -> b n', b=B, n=N)
return samples, sampled_probs
else:
return self.sample_tokens(logits, temperature, top_k, top_p)
def select_tokens(self, logits, num_select, temperature=1.0, top_k=0.0, top_p=0.0, return_all_samples=False):
samples, sampled_probs = self.sample_tokens(logits, temperature, top_k, top_p)
top_indices = torch.topk(sampled_probs, num_select)[1]
top_samples = samples[top_indices]
if return_all_samples:
return top_samples, top_indices, samples
else:
return top_samples, top_indices
def select_tokens_batched(self, logits, num_select, temperature=1.0, top_k=0.0, top_p=0.0, return_all_samples=False):
if logits.ndim > 2:
samples, sampled_probs = self.sample_tokens_batched(logits, temperature, top_k, top_p) # both of shape (B, N)
top_indices = torch.topk(sampled_probs, num_select, dim=-1)[1]
# Need to switch to gather instead of indexing here
top_samples = torch.gather(samples, dim=-1, index=top_indices)
if return_all_samples:
return top_samples, top_indices, samples
else:
return top_samples, top_indices
else:
return self.sample_tokens(logits, num_select, temperature, top_k, top_p, return_all_samples)
def forward_mask_encoder_generation(self, encoder_mod_dict):
"""Modification of forward_mask_encoder adapted for generation, with support for batching
"""
# Form input
B = list(encoder_mod_dict.values())[0]['tensor'].shape[0]
encoder_tokens_all, emb_all, encoder_mask_all, mod_mask_all = self.model.cat_encoder_tensors(encoder_mod_dict)
# Take max num encoder of tokens (although assuming it's the same everywhere would be better)
num_encoder_tokens = (~encoder_mask_all.reshape(B, -1)).sum(dim=1).max()
# Add arange multiplied by small constant to mask so they get sorted in a deterministic way
mask_arange = torch.arange(encoder_mask_all.shape[1], device=encoder_mask_all.device).unsqueeze(0) * 1e-6
ids_shuffle = torch.argsort(encoder_mask_all + mask_arange, dim=1)
# ids_restore = torch.argsort(ids_shuffle, dim=1)
ids_keep = ids_shuffle[:, :num_encoder_tokens]
encoder_tokens = torch.gather(encoder_tokens_all, dim=1,
index=repeat(ids_keep, "b n -> b n d", d=encoder_tokens_all.shape[2]))
encoder_emb = torch.gather(emb_all, dim=1, index=repeat(ids_keep, "b n -> b n d", d=emb_all.shape[2]))
encoder_mask = torch.gather(encoder_mask_all, dim=1, index=ids_keep)
mod_mask = torch.gather(mod_mask_all, dim=1, index=ids_keep)
if self.model.num_register_tokens > 0:
prompt_tokens = repeat(self.prompt_tokens, '() n d -> b n d', b=B)
# We add prompt tokens at the beginning of the sequence
encoder_tokens = torch.cat([prompt_tokens, encoder_tokens], dim=1)
encoder_emb = torch.cat([torch.zeros_like(prompt_tokens), encoder_emb], dim=1)
encoder_mask = torch.cat([torch.zeros((B, prompt_tokens.shape[1]), dtype=torch.bool, device=encoder_mask.device), encoder_mask], dim=1)
mod_mask = torch.cat([torch.full((B, prompt_tokens.shape[1]), -1, dtype=torch.int16, device=mod_mask.device), mod_mask], dim=1)
encoder_tokens[encoder_mask] = 0.
encoder_emb[encoder_mask] = 0.
mod_mask[encoder_mask] = -1
# Mask could be of shape 'b n1 n2' but not needed for masked_fill
# This means this mask can then be re-used for decoder cross-attention
encoder_mask = rearrange(encoder_mask, 'b n2 -> b 1 n2')
return encoder_tokens, encoder_emb, encoder_mask, mod_mask
def forward_mask_decoder_maskgit(self, mod_dict, target_mod, seed=None):
"""Modification of forward_mask_decoder for MaskGIT generation, with support for batching
"""
if seed is not None:
torch.manual_seed(seed)
d = mod_dict[target_mod]
decoder_tokens_all = torch.zeros_like(d['x']) + self.model.mask_token
emb_all = d['emb']
decoder_mask_all = d['target_mask']
B = decoder_tokens_all.shape[0] # Get batch size
mod_mask_all = torch.full_like(d['ids'], self.model.modality_info[target_mod]['id'], dtype=torch.int16)
mod_pos_all = torch.arange(d['x'].shape[1], device=d['x'].device).unsqueeze(0)
mod_pos_all = repeat(mod_pos_all, '1 n -> b n', b=B) # Added: Expansion for batching
num_decoder_tokens = (~decoder_mask_all[0]).sum() # Adapted for batching / Assumes num_decoder_tokens is the same across the batch
# Add arange multiplied by small constant to mask so they get sorted in a deterministic way
mask_arange = torch.arange(decoder_mask_all.shape[1], device=decoder_mask_all.device).unsqueeze(0) * 1e-6
ids_shuffle = torch.argsort(decoder_mask_all + mask_arange, dim=1)
# ids_restore = torch.argsort(ids_shuffle, dim=1)
ids_keep = ids_shuffle[:, :num_decoder_tokens]
decoder_tokens = torch.gather(decoder_tokens_all, dim=1, index=repeat(ids_keep, "b n -> b n d", d=decoder_tokens_all.shape[2]))
decoder_emb = torch.gather(emb_all, dim=1, index=repeat(ids_keep, "b n -> b n d", d=emb_all.shape[2]))
decoder_mask = torch.gather(decoder_mask_all, dim=1, index=ids_keep)
mod_mask = torch.gather(mod_mask_all, dim=1, index=ids_keep)
mod_pos = torch.gather(mod_pos_all, dim=1, index=ids_keep)
decoder_tokens[decoder_mask] = 0.
decoder_emb[decoder_mask] = 0.
mod_mask[decoder_mask] = -1
return decoder_tokens, decoder_emb, decoder_mask, mod_mask, mod_pos
def forward_mask_decoder_roar(self, mod_dict, target_mod, num_select, seed=None):
"""Modification of forward_mask_decoder for ROAR generation, with support for batching
"""
if seed is not None:
torch.manual_seed(seed)
d = mod_dict[target_mod]
decoder_tokens_all = torch.zeros_like(d['x']) + self.model.mask_token
emb_all = d['emb']
decoder_mask_all = d['target_mask']
B = decoder_tokens_all.shape[0] # Get batch size
mod_mask_all = torch.full_like(d['ids'], self.model.modality_info[target_mod]['id'], dtype=torch.int16)
mod_pos_all = torch.arange(d['x'].shape[1], device=d['x'].device).unsqueeze(0)
mod_pos_all = repeat(mod_pos_all, '1 n -> b n', b=B) # Added: Expansion for batching
# Only keep the first num_select tokens
num_decoder_tokens = min(num_select, (~decoder_mask_all[0]).sum()) # Adapted for batching / Assumes num_decoder_tokens is the same across the batch
# Add a small random number to the mask so they get sorted in a random way, but keeping the masked tokens first
mask_rand = torch.rand(decoder_mask_all.shape[1], device=decoder_mask_all.device).unsqueeze(0) * 1e-6
ids_shuffle = torch.argsort(decoder_mask_all + mask_rand, dim=1)
# ids_restore = torch.argsort(ids_shuffle, dim=1)
# Only keep the first num_select_tokens
ids_keep = ids_shuffle[:, :num_decoder_tokens]
decoder_tokens = torch.gather(decoder_tokens_all, dim=1, index=repeat(ids_keep, "b n -> b n d", d=decoder_tokens_all.shape[2]))
decoder_emb = torch.gather(emb_all, dim=1, index=repeat(ids_keep, "b n -> b n d", d=emb_all.shape[2]))
decoder_mask = torch.gather(decoder_mask_all, dim=1, index=ids_keep)
mod_mask = torch.gather(mod_mask_all, dim=1, index=ids_keep)
mod_pos = torch.gather(mod_pos_all, dim=1, index=ids_keep)
decoder_tokens[decoder_mask] = 0.
decoder_emb[decoder_mask] = 0.
mod_mask[decoder_mask] = -1
return decoder_tokens, decoder_emb, decoder_mask, mod_mask, mod_pos
def forward_mask_decoder_autoregressive(self, mod_dict, target_mod, seed=None):
# Adapted for batching
if seed is not None:
torch.manual_seed(seed)
# This is the concatenation part
d = mod_dict[target_mod]
decoder_ids_all = d['ids']
emb_all = d['emb']
decoder_mask_all = d['target_mask']
B = decoder_ids_all.shape[0] # Get batch size
mod_mask_all = torch.full_like(d['ids'], self.model.modality_info[target_mod]['id'], dtype=torch.int16)
mod_pos_all = torch.arange(d['x'].shape[1], device=d['x'].device).unsqueeze(0)
mod_pos_all = repeat(mod_pos_all, '1 n -> b n', b=B)
num_decoder_tokens = (~decoder_mask_all[0]).sum() # Adapted for batching, but assumes num_decoder_tokens is the same across the batch
# Add arange multiplied by small constant to mask so they get sorted in a deterministic way
mask_arange = torch.arange(decoder_mask_all.shape[1], device=decoder_mask_all.device).unsqueeze(0) * 1e-6
ids_shuffle = torch.argsort(decoder_mask_all + mask_arange, dim=1)
# ids_restore = torch.argsort(ids_shuffle, dim=1)
ids_keep = ids_shuffle[:, :num_decoder_tokens]
# Same as in forward_mask_decoder
decoder_ids = torch.gather(decoder_ids_all, dim=1, index=ids_keep)
decoder_emb = torch.gather(emb_all, dim=1, index=repeat(ids_keep, "b n -> b n d", d=emb_all.shape[2]))
decoder_mask = torch.gather(decoder_mask_all, dim=1, index=ids_keep)
mod_mask = torch.gather(mod_mask_all, dim=1, index=ids_keep)
mod_pos = torch.gather(mod_pos_all, dim=1, index=ids_keep)
decoder_ids[decoder_mask] = 0
decoder_emb[decoder_mask] = 0.
mod_mask[decoder_mask] = -1
return decoder_ids, decoder_emb, decoder_mask, mod_mask, mod_pos
def merge_sequences(self, mod_dict, pred_ids, target_mod, text_tokenizer, default_sentinel="[S_1]"):
device = mod_dict[target_mod]['tensor'].device
# Get input ids
input_ids = mod_dict[target_mod]['tensor'].squeeze().detach().cpu()
input_ids = input_ids[mod_dict[target_mod]['input_mask'].squeeze().detach().cpu() == 0]
input_ids = input_ids.tolist()
if len(input_ids) == 0:
input_ids = [text_tokenizer.get_vocab()[default_sentinel]]
# Get predicted ids
pred_ids = pred_ids.squeeze().detach().cpu().tolist()
if isinstance(pred_ids, int):
pred_ids = [pred_ids]
# Get sentinel ids using the tokenizer
sentinel_ids = set(get_sentinel_to_id_mapping(text_tokenizer).values())
# Perform merging
merged_ids = merge_span_masking(input_ids, pred_ids, sentinel_ids)
merged_ids = torch.tensor(merged_ids).unsqueeze(0)
# Create new dict
new_input_mask = torch.zeros_like(merged_ids, dtype=torch.bool)
new_target_mask = torch.ones_like(merged_ids, dtype=torch.bool)
new_dict = {'tensor': merged_ids.to(device),
'input_mask': new_input_mask.to(device),
'target_mask': new_target_mask.to(device)}
new_dict['decoder_attention_mask'] = torch.zeros_like(new_target_mask, dtype=torch.bool)
mod_dict[target_mod] = new_dict
return mod_dict
def merge_sequences_batched(self, mod_dict, pred_ids, target_mod, text_tokenizer, default_sentinel="[S_1]"):
# Unbatches and calls merge sequence per batch, then regroups it into a batch
pad_id = text_tokenizer.token_to_id("[PAD]")
B = mod_dict[target_mod]['tensor'].shape[0]
device = mod_dict[target_mod]['tensor'].device
tensors = torch.split(mod_dict[target_mod]['tensor'], 1)
input_masks = torch.split(mod_dict[target_mod]['input_mask'], 1)
pred_ids = torch.split(pred_ids, 1)
input_dicts = []
for t, im in zip(tensors, input_masks):
d = {target_mod: {'tensor': t, 'input_mask': im}}
input_dicts.append(d)
merged_tensors = []
merged_input_masks = []
merged_target_masks = []
merged_seq_lens = []
for input_d, pi in zip(input_dicts, pred_ids):
# Output of merge_sequences is mod_dict with modified target mod
merged_d = self.merge_sequences(input_d, pi, target_mod, text_tokenizer, default_sentinel)[target_mod]
merged_tensors.append(merged_d['tensor'])
merged_input_masks.append(merged_d['input_mask'])
merged_target_masks.append(merged_d['input_mask'])
merged_seq_lens.append(merged_d['tensor'].shape[1])
max_seq_len = max(merged_seq_lens)
for i in range(len(merged_tensors)):
# Right pad all tensors
p1d = (0, max_seq_len - merged_seq_lens[i])
merged_tensors[i] = F.pad(merged_tensors[i], p1d, "constant",pad_id)
merged_input_masks[i] = F.pad(merged_input_masks[i], p1d, "constant", True)
merged_target_masks[i] = F.pad(merged_target_masks[i], p1d, "constant", True)
new_dict = {'tensor': torch.cat(merged_tensors, dim=0).to(device),
'input_mask': torch.cat(merged_input_masks, dim=0).to(device),
'target_mask': torch.cat(merged_target_masks, dim=0).to(device)}
new_dict['decoder_attention_mask'] = torch.zeros_like(new_dict['target_mask'], dtype=torch.bool)
mod_dict[target_mod] = new_dict
return mod_dict
def forward_enc_dec_maskgit_batched(self, mod_dict, target_mod, seed=None):
# Encoder
encoder_mod_dict = {mod: self.model.encoder_embeddings[mod](d)
for mod, d in mod_dict.items()
if mod in self.model.encoder_embeddings}
encoder_tokens, encoder_emb, encoder_mask, encoder_mod_mask = self.forward_mask_encoder_generation(encoder_mod_dict)
x = encoder_tokens + encoder_emb
x = self.model.forward_encoder(x, encoder_mask)
# Decoder
context = self.model.decoder_proj_context(x) + encoder_emb
decoder_mod_dict = {target_mod: self.model.decoder_embeddings[target_mod].forward_embed(mod_dict[target_mod])}
decoder_tokens, decoder_emb, decoder_mask, decoder_mod_mask, mod_pos = self.forward_mask_decoder_maskgit(decoder_mod_dict, target_mod, seed=seed)
y = decoder_tokens + decoder_emb
y = self.model.forward_decoder(y, context, encoder_mask, None)
B, N, D = y.shape
logits = self.model.forward_logits(y, decoder_mod_dict, decoder_mod_mask)[target_mod]
logits = logits.reshape(B, N, -1)
return logits, mod_pos
def maskgit_step_batched(self, mod_dict, target_mod, num_select, temperature, top_k, top_p, seed=None):
logits, mod_pos = self.forward_enc_dec_maskgit_batched(mod_dict, target_mod, seed=seed)
# MaskGIT sampling
top_samples, top_indices = self.select_tokens_batched(logits, num_select,
temperature=temperature, top_k=top_k, top_p=top_p)
# Update mod dict
# We rely on gather / scatter for batched operations
top_pos = torch.gather(mod_pos, -1, top_indices) # (B, num_select)
mod_dict[target_mod]['tensor'] = torch.scatter(mod_dict[target_mod]['tensor'], -1, top_pos, top_samples)
mod_dict[target_mod]['input_mask'] = torch.scatter(mod_dict[target_mod]['input_mask'], -1, top_pos, torch.zeros_like(top_samples, dtype=torch.bool))
mod_dict[target_mod]['target_mask'] = torch.scatter(mod_dict[target_mod]['target_mask'], -1, top_pos, torch.ones_like(top_samples, dtype=torch.bool))
return mod_dict
def guided_maskgit_step_batched(self, mod_dict, target_mod, num_select, temperature, top_k, top_p,
conditioning=[], guidance_scale=1.0, seed=None, write_all_predictions=False):
### 1 - First pass, with conditioning
logits_cond, _ = self.forward_enc_dec_maskgit_batched(mod_dict, target_mod, seed=seed)
### 2 - Second pass, without conditioning
mod_dict_uncond = copy.deepcopy(mod_dict)
for mod in conditioning:
if self.model.modality_info[mod]['type'] in ['seq', 'seq_token']:
mod_dict_uncond = empty_seq_modality(mod_dict_uncond, mod)
elif self.model.modality_info[mod]['type'] in ['seq_emb']:
mod_dict_uncond = empty_seq_emb_modality(mod_dict_uncond, mod)
else:
mod_dict_uncond = empty_img_modality(mod_dict_uncond, mod)
logits_uncond, mod_pos = self.forward_enc_dec_maskgit_batched(mod_dict_uncond, target_mod, seed=seed)
### 3 - Classifier-free guidance
logits = logits_uncond + (logits_cond - logits_uncond) * guidance_scale
### 4 - MaskGIT sampling
top_samples, top_indices, all_samples = self.select_tokens_batched(
logits, num_select,
temperature=temperature, top_k=top_k, top_p=top_p,
return_all_samples=True
)
### 5 - Update mod dict
# We rely on gather / scatter for batched operations
top_pos = torch.gather(mod_pos, -1, top_indices) # (B, num_select)
if write_all_predictions:
mod_dict[target_mod]['tensor'][:, mod_pos] = all_samples
else:
mod_dict[target_mod]['tensor'] = torch.scatter(mod_dict[target_mod]['tensor'], -1, top_pos, top_samples)
mod_dict[target_mod]['input_mask'] = torch.scatter(mod_dict[target_mod]['input_mask'], -1, top_pos, torch.zeros_like(top_samples, dtype=torch.bool))
mod_dict[target_mod]['target_mask'] = torch.scatter(mod_dict[target_mod]['target_mask'], -1, top_pos, torch.ones_like(top_samples, dtype=torch.bool))
return mod_dict
def multi_guided_maskgit_step_batched(self, uncond_dict, cond_dicts, cond_weights, target_mod, num_select,
temperature, top_k, top_p, seed=None, write_all_predictions=False):
### 1 - Conditional forward passes (one for each guided condition)
logits_cond_all = []
for cond_dict in cond_dicts:
logits_cond_i, _ = self.forward_enc_dec_maskgit_batched(cond_dict, target_mod, seed=seed)
logits_cond_all.append(logits_cond_i)
### 2 - Unconditional forward pass
logits_uncond, mod_pos = self.forward_enc_dec_maskgit_batched(uncond_dict, target_mod, seed=seed)
### 3 Conjunction of multiple conditions: l_uncond + sum_i{w_i * (l_cond_i - l_uncond)}
# See https://arxiv.org/abs/2206.01714
logits = logits_uncond + torch.stack([w * (logits_cond - logits_uncond) for w, logits_cond in zip(cond_weights, logits_cond_all)]).sum(dim=0)
### 4 - MaskGIT sampling
top_samples, top_indices, all_samples = self.select_tokens_batched(
logits, num_select,
temperature=temperature, top_k=top_k, top_p=top_p,
return_all_samples=True
)
### 5 - Update mod dict with newly generated tokens
# We rely on gather / scatter for batched operations
top_pos = torch.gather(mod_pos, -1, top_indices) # (B, num_select)
if write_all_predictions:
uncond_dict[target_mod]['tensor'][:, mod_pos] = all_samples
else:
uncond_dict[target_mod]['tensor'] = torch.scatter(uncond_dict[target_mod]['tensor'], -1, top_pos, top_samples)
uncond_dict[target_mod]['input_mask'] = torch.scatter(uncond_dict[target_mod]['input_mask'], -1, top_pos, torch.zeros_like(top_samples, dtype=torch.bool))
uncond_dict[target_mod]['target_mask'] = torch.scatter(uncond_dict[target_mod]['target_mask'], -1, top_pos, torch.ones_like(top_samples, dtype=torch.bool))
# Update conditioning dicts
for i in range(len(cond_dicts)):
cond_dicts[i][target_mod]['tensor'] = torch.scatter(cond_dicts[i][target_mod]['tensor'], -1, top_pos, top_samples)
cond_dicts[i][target_mod]['input_mask'] = torch.scatter(cond_dicts[i][target_mod]['input_mask'], -1, top_pos, torch.zeros_like(top_samples, dtype=torch.bool))
cond_dicts[i][target_mod]['target_mask'] = torch.scatter(cond_dicts[i][target_mod]['target_mask'], -1, top_pos, torch.ones_like(top_samples, dtype=torch.bool))
return uncond_dict, cond_dicts
def forward_enc_dec_roar_batched(self, mod_dict, target_mod, num_select, seed=None):
# Encoder
encoder_mod_dict = {mod: self.model.encoder_embeddings[mod](d)
for mod, d in mod_dict.items()
if mod in self.model.encoder_embeddings}
encoder_tokens, encoder_emb, encoder_mask, encoder_mod_mask = self.forward_mask_encoder_generation(encoder_mod_dict)
x = encoder_tokens + encoder_emb
x = self.model.forward_encoder(x, encoder_mask)
# Decoder
context = self.model.decoder_proj_context(x) + encoder_emb
decoder_mod_dict = {target_mod: self.model.decoder_embeddings[target_mod].forward_embed(mod_dict[target_mod])}
decoder_tokens, decoder_emb, decoder_mask, decoder_mod_mask, mod_pos = self.forward_mask_decoder_roar(decoder_mod_dict, target_mod, num_select, seed=seed)
y = decoder_tokens + decoder_emb
y = self.model.forward_decoder(y, context, encoder_mask, None)
B, N, D = y.shape
logits = self.model.forward_logits(y, decoder_mod_dict, decoder_mod_mask)[target_mod]
logits = logits.reshape(B, N, -1)
return logits, mod_pos
def roar_step_batched(self, mod_dict, target_mod, num_select, temperature, top_k, top_p, seed=None):
"""ROAR = Random Order Autoregression"""
logits, mod_pos = self.forward_enc_dec_roar_batched(mod_dict, target_mod, num_select, seed=seed)
# Simple sampling
samples, sampled_probs = self.sample_tokens_batched(logits, temperature, top_k=top_k, top_p=top_p)
# Update mod dict
# We rely on scatter for batched operations
select_pos = mod_pos
mod_dict[target_mod]['tensor'] = torch.scatter(mod_dict[target_mod]['tensor'], -1, select_pos, samples)
mod_dict[target_mod]['input_mask'] = torch.scatter(mod_dict[target_mod]['input_mask'], -1, select_pos, torch.zeros_like(samples, dtype=torch.bool))
mod_dict[target_mod]['target_mask'] = torch.scatter(mod_dict[target_mod]['target_mask'], -1, select_pos, torch.ones_like(samples, dtype=torch.bool))
return mod_dict
def guided_roar_step_batched(self, mod_dict, target_mod, num_select, temperature, top_k, top_p,
conditioning=[], guidance_scale=1.0, seed=None):
"""ROAR = Random Order Autoregression"""
### 1 - First pass, with conditioning
logits_cond, _ = self.forward_enc_dec_roar_batched(mod_dict, target_mod, num_select, seed=seed)
### 2 - Second pass, without conditioning
mod_dict_uncond = copy.deepcopy(mod_dict)
for mod in conditioning:
if self.model.modality_info[mod]['type'] in ['seq', 'seq_token']:
mod_dict_uncond = empty_seq_modality(mod_dict_uncond, mod)
elif self.model.modality_info[mod]['type'] in ['seq_emb']:
mod_dict_uncond = empty_seq_emb_modality(mod_dict_uncond, mod)
else:
mod_dict_uncond = empty_img_modality(mod_dict_uncond, mod)
logits_uncond, mod_pos = self.forward_enc_dec_roar_batched(mod_dict_uncond, target_mod, num_select, seed=seed)
### 3 - Classifier-free guidance
logits = logits_uncond + (logits_cond - logits_uncond) * guidance_scale
### 4 - Simple sampling
samples, sampled_probs = self.sample_tokens_batched(logits, temperature, top_k=top_k, top_p=top_p)
### 5 - Update mod dict
# We rely on gather / scatter for batched operations
select_pos = mod_pos
mod_dict[target_mod]['tensor'] = torch.scatter(mod_dict[target_mod]['tensor'], -1, select_pos, samples)
mod_dict[target_mod]['input_mask'] = torch.scatter(mod_dict[target_mod]['input_mask'], -1, select_pos, torch.zeros_like(samples, dtype=torch.bool))
mod_dict[target_mod]['target_mask'] = torch.scatter(mod_dict[target_mod]['target_mask'], -1, select_pos, torch.ones_like(samples, dtype=torch.bool))
return mod_dict
def multi_guided_roar_step_batched(self, uncond_dict, cond_dicts, cond_weights, target_mod,
num_select, temperature, top_k, top_p, seed=None):
### 1 - Conditional forward passes (one for each guided condition)
logits_cond_all = []
for cond_dict in cond_dicts:
logits_cond_i, _ = self.forward_enc_dec_roar_batched(cond_dict, target_mod, num_select, seed=seed)
logits_cond_all.append(logits_cond_i)
### 2 - Unconditional forward pass
logits_uncond, mod_pos = self.forward_enc_dec_roar_batched(uncond_dict, target_mod, num_select, seed=seed)
### 3 Conjunction of multiple conditions: l_uncond + sum_i{w_i * (l_cond_i - l_uncond)}
# See https://arxiv.org/abs/2206.01714
logits = logits_uncond + torch.stack([w * (logits_cond - logits_uncond) for w, logits_cond in zip(cond_weights, logits_cond_all)]).sum(dim=0)
### 4 - Simple sampling
samples, sampled_probs = self.sample_tokens_batched(logits, temperature, top_k=top_k, top_p=top_p)
### 5 - Update mod dict
# We rely on gather / scatter for batched operations
select_pos = mod_pos
uncond_dict[target_mod]['tensor'] = torch.scatter(uncond_dict[target_mod]['tensor'], -1, select_pos, samples)
uncond_dict[target_mod]['input_mask'] = torch.scatter(uncond_dict[target_mod]['input_mask'], -1, select_pos, torch.zeros_like(samples, dtype=torch.bool))
uncond_dict[target_mod]['target_mask'] = torch.scatter(uncond_dict[target_mod]['target_mask'], -1, select_pos, torch.ones_like(samples, dtype=torch.bool))
# Update conditioning dicts
for i in range(len(cond_dicts)):
cond_dicts[i][target_mod]['tensor'] = torch.scatter(cond_dicts[i][target_mod]['tensor'], -1, select_pos, samples)
cond_dicts[i][target_mod]['input_mask'] = torch.scatter(cond_dicts[i][target_mod]['input_mask'], -1, select_pos, torch.ones_like(samples, dtype=torch.bool))
cond_dicts[i][target_mod]['target_mask'] = torch.scatter(cond_dicts[i][target_mod]['target_mask'], -1, select_pos, torch.zeros_like(samples, dtype=torch.bool))
return uncond_dict, cond_dicts
def autoregressive_step_batched(self, mod_dict, target_mod, temperature, top_k: Union[float, int], top_p: float,
use_eos=True, eos_token=None, start_tokens=None, text_tokenizer=None, seed=None):
# Encoder
encoder_mod_dict = {mod: self.model.encoder_embeddings[mod](d)
for mod, d in mod_dict.items()
if mod in self.model.encoder_embeddings}
encoder_tokens, encoder_emb, encoder_mask, encoder_mod_mask = self.forward_mask_encoder_generation(encoder_mod_dict)
x = encoder_tokens + encoder_emb
x = self.model.forward_encoder(x, encoder_mask) # B, N, D
# Get batch size
B = x.shape[0]
# Decoder
context = self.model.decoder_proj_context(x) + encoder_emb
decoder_mod_dict = {target_mod: self.model.decoder_embeddings[target_mod].forward_embed(mod_dict[target_mod])}
decoder_ids, decoder_emb, decoder_mask, decoder_mod_mask, mod_pos = self.forward_mask_decoder_autoregressive(decoder_mod_dict, target_mod, seed=seed)
device = decoder_ids.device
seq_len = self.model.modality_info[target_mod]['max_tokens']
if use_eos and eos_token is None:
# The eos_token is the final sentinel token provided
eos_token = decoder_ids[0][decoder_mask[0] == 0][-1] # Assumes the EOS token is the same for all
if use_eos:
eos_token = eos_token.to(device)
# If no start_tokens, just use the beginning of the actual target (i.e., a sentinel token)
out = decoder_ids[:, :1] if start_tokens is None else start_tokens.to(device)
# Set decoder_tokens to None, we do not use them for decoding
decoder_ids = None
# If all samples of the batch have eos, return early
if use_eos and (out == eos_token).any(dim=-1).all():
return out
y_emb = decoder_emb[:, :seq_len]
seq_len = y_emb.shape[1]
# Auto-regressive decoding and sampling
for i in range(seq_len):
cur_len = out.shape[1]
# Convert ids into word embeddings and add corresponding posembs + modemb
y = self.model.decoder_embeddings[target_mod].token_emb(out) + y_emb[:, :cur_len]
# Build causal mask
causal_mask = torch.ones((cur_len, cur_len), dtype=torch.bool, device=y.device).triu(1)
causal_mask = repeat(causal_mask, "n1 n2 -> b n1 n2", b=B)
y = self.model.forward_decoder(y, context, encoder_mask, causal_mask)
logits = self.model.forward_logits(y, decoder_mod_dict, decoder_mod_mask[:, :cur_len])[target_mod]
logits = rearrange(logits, "(b n) d -> b n d", b=B, n=cur_len)
last_logits = logits[:, -1]
# Sample token for the newly generated logit
if np.isclose(temperature, 0, atol=1e-10):
sample = torch.argmax(last_logits, dim=-1, keepdim=True)
else:
filtered_logits = self.top_k_top_p_filtering(last_logits, top_k, top_p)
probs = F.softmax(filtered_logits / temperature, dim=-1)
sample = torch.multinomial(probs, 1)
out = torch.cat((out, sample), dim=-1)
if use_eos and (out == eos_token).any(dim=-1).all():
break
mod_dict = self.merge_sequences_batched(mod_dict, out, target_mod, text_tokenizer)
return mod_dict
def guided_autoregressive_step_batched(self, mod_dict, target_mod, temperature, top_k: Union[float, int], top_p: float,
use_eos=True, eos_token=None, start_tokens=None, text_tokenizer=None,
conditioning=[], guidance_scale=1.0, seed=None):
### 1 - Encoder forward pass, with conditioning
# Encoder
encoder_mod_dict = {mod: self.model.encoder_embeddings[mod](d)
for mod, d in mod_dict.items()
if mod in self.model.encoder_embeddings}
encoder_tokens, encoder_emb, encoder_mask_cond, encoder_mod_mask = self.forward_mask_encoder_generation(encoder_mod_dict)
x = encoder_tokens + encoder_emb
x = self.model.forward_encoder(x, encoder_mask_cond) # B, N, D
# Get batch size
B = x.shape[0]
# Decoder
context_cond = self.model.decoder_proj_context(x) + encoder_emb
decoder_mod_dict_cond = {target_mod: self.model.decoder_embeddings[target_mod].forward_embed(mod_dict[target_mod])}
decoder_ids, decoder_emb, decoder_mask, decoder_mod_mask_cond, mod_pos = self.forward_mask_decoder_autoregressive(decoder_mod_dict_cond, target_mod, seed=seed)
device = decoder_ids.device
seq_len = self.model.modality_info[target_mod]['max_tokens']
### 2 - Encoder forward pass, without conditioning
mod_dict_uncond = copy.deepcopy(mod_dict)
for mod in conditioning:
if self.model.modality_info[mod]['type'] in ['seq', 'seq_token']:
mod_dict_uncond = empty_seq_modality(mod_dict_uncond, mod)
elif self.model.modality_info[mod]['type'] in ['seq_emb']:
mod_dict_uncond = empty_seq_emb_modality(mod_dict_uncond, mod)
else:
mod_dict_uncond = empty_img_modality(mod_dict_uncond, mod)
# Encoder
encoder_mod_dict = {mod: self.model.encoder_embeddings[mod](d)
for mod, d in mod_dict_uncond.items()
if mod in self.model.encoder_embeddings}
encoder_tokens, encoder_emb, encoder_mask_uncond, encoder_mod_mask = self.forward_mask_encoder_generation(encoder_mod_dict)
x = encoder_tokens + encoder_emb
x = self.model.forward_encoder(x, encoder_mask_uncond) # B, N, D
# Decoder
context_uncond = self.model.decoder_proj_context(x) + encoder_emb
decoder_mod_dict_uncond = {target_mod: self.model.decoder_embeddings[target_mod].forward_embed(mod_dict[target_mod])}
decoder_ids, decoder_emb, decoder_mask, decoder_mod_mask_uncond, mod_pos = self.forward_mask_decoder_autoregressive(decoder_mod_dict_uncond, target_mod, seed=seed)
if use_eos and eos_token is None:
# The eos_token is the final sentinel token provided
eos_token = decoder_ids[0][decoder_mask[0] == 0][-1] # Assumes the EOS token is the same for all
if use_eos:
eos_token = eos_token.to(device)
# If no start_tokens, just use the beginning of the actual target (i.e., a sentinel token)
out = decoder_ids[:, :1] if start_tokens is None else start_tokens.to(device)
# Set decoder_tokens to None, we do not use them for decoding
decoder_ids = None
# If all samples of the batch have eos, return early
if use_eos and (out == eos_token).any(dim=-1).all():
return out
y_emb = decoder_emb[:, :seq_len]
seq_len = y_emb.shape[1]
### 3 - Auto-regressive decoding and sampling
for i in range(seq_len):
cur_len = out.shape[1]
# Convert ids into word embeddings and add corresponding posembs + modemb
y = self.model.decoder_embeddings[target_mod].token_emb(out) + y_emb[:, :cur_len]
# Build causal mask
causal_mask = torch.ones((cur_len, cur_len), dtype=torch.bool, device=y.device).triu(1)
causal_mask = repeat(causal_mask, "n1 n2 -> b n1 n2", b=B)
### 3a - Decoder forward pass, with conditioning
y_cond = self.model.forward_decoder(y, context_cond, encoder_mask_cond, causal_mask)
logits_cond = self.model.forward_logits(y_cond, decoder_mod_dict_cond, decoder_mod_mask_cond[:, :cur_len])[target_mod]
logits_cond = rearrange(logits_cond, "(b n) d -> b n d", b=B, n=cur_len)
last_logits_cond = logits_cond[:, -1]
### 3b - Decoder forward pass, without conditioning
y_uncond = self.model.forward_decoder(y, context_uncond, encoder_mask_uncond, causal_mask)
logits_uncond = self.model.forward_logits(y_uncond, decoder_mod_dict_uncond, decoder_mod_mask_uncond[:, :cur_len])[target_mod]
logits_uncond = rearrange(logits_uncond, "(b n) d -> b n d", b=B, n=cur_len)
last_logits_uncond = logits_uncond[:, -1]
### 3c - Classifier-free guidance
last_logits = last_logits_uncond + (last_logits_cond - last_logits_uncond) * guidance_scale
# Sample token for the newly generated logit
if np.isclose(temperature, 0, atol=1e-10):
sample = torch.argmax(last_logits, dim=-1, keepdim=True)
else:
filtered_logits = self.top_k_top_p_filtering(last_logits, top_k, top_p)
probs = F.softmax(filtered_logits / temperature, dim=-1)
sample = torch.multinomial(probs, 1)
out = torch.cat((out, sample), dim=-1)
if use_eos and (out == eos_token).any(dim=-1).all():
break
mod_dict = self.merge_sequences_batched(mod_dict, out, target_mod, text_tokenizer)
return mod_dict
@torch.no_grad()
def generate(self, mod_dict, schedule, top_k=0.0, top_p=0.0, text_tokenizer=None, verbose=False, seed=None):
""" Generates a sequence of tokens from the input modalities.
:param mod_dict: Dictionary of modalities.
:param schedule: Schedule of modalities to use.
List of dictionaries containing {target_domain, scheme, num_tokens, temperature, cfg_scale, cfg_cond_domains}.
:param top_k: top_k > 0: Keep only top k tokens with highest probability (a.k.a. top-k filtering).
:param top_p: top_p > 0.0: Keep the top tokens with cumulative probability >= top_p (a.k.a. nucleus filtering).
:param text_tokenizer: Text tokenizer.
:param verbose: Whether to print progress.
:param seed: Random seed.
:return: Generated mod dict.
"""
# Input embedding -> tokenizes the modalities - Many are placeholder for now
mod_dict = copy.deepcopy(mod_dict)
for step, schedule_step_info in tqdm(enumerate(schedule), disable=not verbose):
target_mod = schedule_step_info['target_domain']
temp = schedule_step_info['temperature']
cfg_scale = schedule_step_info.get('cfg_scale', 1.0)
cfg_conditioning = schedule_step_info.get('cfg_cond_domains', [])
seed_i = seed + step if seed is not None else None
if self.model.modality_info[target_mod]['type'] == 'img':
scheme = schedule_step_info['scheme']
num_select = schedule_step_info['num_tokens']
if scheme.lower() == 'maskgit':
if cfg_scale == 1.0 or len(cfg_conditioning) == 0:
mod_dict = self.maskgit_step_batched(
mod_dict, target_mod, num_select, temperature=temp,
top_k=top_k, top_p=top_p, seed=seed_i
)
else:
mod_dict = self.guided_maskgit_step_batched(
mod_dict, target_mod, num_select, temperature=temp, top_k=top_k, top_p=top_p,
conditioning=cfg_conditioning, guidance_scale=cfg_scale, seed=seed_i
)
elif scheme.lower() == 'roar':
if cfg_scale == 1.0 or len(cfg_conditioning) == 0:
mod_dict = self.roar_step_batched(
mod_dict, target_mod, num_select, temperature=temp,
top_k=top_k, top_p=top_p, seed=seed_i
)
else:
mod_dict = self.guided_roar_step_batched(
mod_dict, target_mod, num_select, temperature=temp, top_k=top_k, top_p=top_p,
conditioning=cfg_conditioning, guidance_scale=cfg_scale, seed=seed_i
)
else:
raise ValueError("Invalid sampling scheme")
elif self.model.modality_info[target_mod]['type'] in ['seq', 'seq_token']:
if cfg_scale == 1.0 or len(cfg_conditioning) == 0:
mod_dict = self.autoregressive_step_batched(
mod_dict, target_mod, temperature=temp, top_k=top_k, top_p=top_p,
text_tokenizer=text_tokenizer, seed=seed_i
)
else:
mod_dict = self.guided_autoregressive_step_batched(
mod_dict, target_mod, temperature=temp, top_k=top_k, top_p=top_p,
text_tokenizer=text_tokenizer, conditioning=cfg_conditioning,
guidance_scale=cfg_scale, seed=seed_i
)
else:
raise ValueError("Invalid schedule")
return mod_dict
@torch.no_grad()
def generate_iter(self, mod_dict, schedule, top_k=0.0, top_p=0.0, text_tokenizer=None, verbose=False, seed=None):
""" Iterator that generates a sequence of tokens from the input modalities step by step.
:param mod_dict: Dictionary of modalities.
:param schedule: Schedule of modalities to use.
List of dictionaries containing {target_domain, scheme, num_tokens, temperature, cfg_scale, cfg_cond_domains}.
:param top_k: top_k > 0: Keep only top k tokens with highest probability (a.k.a. top-k filtering).
:param top_p: top_p > 0.0: Keep the top tokens with cumulative probability >= top_p (a.k.a. nucleus filtering).
:param text_tokenizer: Text tokenizer.
:param verbose: Whether to print progress.
:param seed: Random seed.
:return: Iterator of generated mod dict.
"""
# Input embedding -> tokenizes the modalities - Many are placeholder for now
mod_dict = copy.deepcopy(mod_dict)
for step, schedule_step_info in tqdm(enumerate(schedule), disable=not verbose):
target_mod = schedule_step_info['target_domain']
temp = schedule_step_info['temperature']
cfg_scale = schedule_step_info.get('cfg_scale', 1.0)
cfg_conditioning = schedule_step_info.get('cfg_cond_domains', [])
seed_i = seed + step if seed is not None else None
if self.model.modality_info[target_mod]['type'] == 'img':
scheme = schedule_step_info['scheme']
num_select = schedule_step_info['num_tokens']
if scheme.lower() == 'maskgit':
if cfg_scale == 1.0 or len(cfg_conditioning) == 0:
mod_dict = self.maskgit_step_batched(
mod_dict, target_mod, num_select, temperature=temp,
top_k=top_k, top_p=top_p, seed=seed_i
)
else:
mod_dict = self.guided_maskgit_step_batched(
mod_dict, target_mod, num_select, temperature=temp, top_k=top_k, top_p=top_p,
conditioning=cfg_conditioning, guidance_scale=cfg_scale, seed=seed_i,
write_all_predictions=True
)
elif scheme.lower() == 'roar':
if cfg_scale == 1.0 or len(cfg_conditioning) == 0:
mod_dict = self.roar_step_batched(
mod_dict, target_mod, num_select, temperature=temp,
top_k=top_k, top_p=top_p, seed=seed_i
)
else:
mod_dict = self.guided_roar_step_batched(
mod_dict, target_mod, num_select, temperature=temp, top_k=top_k, top_p=top_p,
conditioning=cfg_conditioning, guidance_scale=cfg_scale, seed=seed_i
)
else:
raise ValueError("Invalid sampling scheme")
elif self.model.modality_info[target_mod]['type'] in ['seq', 'seq_token']:
if cfg_scale == 1.0 or len(cfg_conditioning) == 0:
mod_dict = self.autoregressive_step_batched(
mod_dict, target_mod, temperature=temp, top_k=top_k, top_p=top_p,
text_tokenizer=text_tokenizer, seed=seed_i
)
else:
mod_dict = self.guided_autoregressive_step_batched(
mod_dict, target_mod, temperature=temp, top_k=top_k, top_p=top_p,
text_tokenizer=text_tokenizer, conditioning=cfg_conditioning,
guidance_scale=cfg_scale, seed=seed_i
)
else:
raise ValueError("Invalid schedule")
yield mod_dict
@torch.no_grad()
def generate_multi_guided(self, uncond_dict, cond_dicts, schedule, top_k=0.0, top_p=0.0,
text_tokenizer=None, verbose=False, seed=None):
# Generation function for multiple weighted conditions
# To detect when a modality has finished generating, we keep track of the current target modality
cur_target_mod = schedule[0]['target_domain']
uncond_dict = copy.deepcopy(uncond_dict)
cond_dicts = copy.deepcopy(cond_dicts)
# Add the to-be-generated modality to the conditional dicts
for i in range(len(cond_dicts)):
cond_dicts[i][cur_target_mod] = copy.deepcopy(uncond_dict[cur_target_mod])
for step, schedule_step_info in tqdm(enumerate(schedule), disable=not verbose):
target_mod = schedule_step_info['target_domain']
temp = schedule_step_info['temperature']
num_select = schedule_step_info['num_tokens']
cond_weights = schedule_step_info['cfg_scale']
# Once a modality is fully generated, add it as a new condition
if cur_target_mod != target_mod:
for i in range(len(cond_dicts)):
# Remove the previously generated modality from the conditionings
del cond_dicts[i][cur_target_mod]
# Add the next modality to be generated to the conditionings
cond_dicts[i][target_mod] = copy.deepcopy(uncond_dict[target_mod])
# Remove the fully generated modality from the unconditional dict inputs
uncond_dict[cur_target_mod]['input_mask'][:] = True
# Add the previously generated modality as an additional condition
new_cond = {}
new_cond[cur_target_mod] = copy.deepcopy(uncond_dict[cur_target_mod])
new_cond[cur_target_mod]['input_mask'][:] = False
new_cond[cur_target_mod]['target_mask'][:] = True
new_cond[target_mod] = copy.deepcopy(uncond_dict[target_mod])
cond_dicts.append(new_cond)
cur_target_mod = target_mod
if self.model.modality_info[target_mod]['type'] == 'img':
scheme = schedule_step_info['scheme']
if scheme.lower() == 'maskgit':
uncond_dict, cond_dicts = self.multi_guided_maskgit_step_batched(
uncond_dict, cond_dicts, cond_weights, target_mod, num_select, temp, top_k, top_p, seed=seed
)
elif scheme.lower() == 'roar':
uncond_dict, cond_dicts = self.multi_guided_roar_step_batched(
uncond_dict, cond_dicts, cond_weights, target_mod, num_select, temp, top_k, top_p, seed=seed
)
else:
raise ValueError("Invalid sampling scheme")
else:
raise NotImplementedError("Only image modalities are supported for now")
return uncond_dict
@torch.no_grad()
def generate_sam_dense(self, mod_dict, schedule, text_tokenizer, batch_size=16,
key='sam_instance', top_k=0.0, top_p=0.0, seed=None, verbose=False):
# Generation function for dense SAM instance prediction
device = mod_dict[list(mod_dict.keys())[0]]['tensor'].device
mod_dict = copy.deepcopy(mod_dict)
# Repeat the input batch to match the batch size
expanded_batch = expand_to_batch(copy.deepcopy(mod_dict), batch_size=batch_size)
# Filter the schedule to only include the key domain
schedule = [s for s in schedule if s['target_domain'] == key]
out_dict = self.generate(
expanded_batch, schedule, text_tokenizer=text_tokenizer,
verbose=verbose, seed=seed,
top_p=top_p, top_k=top_k,
)
# Merge the batch generated sequences into one sequence
sentinel_ids = set(get_sentinel_to_id_mapping(text_tokenizer).values())
merged_seq = []
for i in range(batch_size):
input_seq = out_dict[key]['tensor'][i]
input_seq = input_seq[out_dict[key]['input_mask'][i] == 0]
input_seq = input_seq.tolist()
target_seq = out_dict[key]['tensor'][i]
target_seq = target_seq[out_dict[key]['target_mask'][i] == 0]
target_seq = target_seq.tolist()
merged_seq.extend(merge_span_masking(input_seq, target_seq, sentinel_ids=sentinel_ids))
merged_seq = torch.tensor(merged_seq, device=device).unsqueeze(0)
mod_dict[key] = {
'tensor': merged_seq,
'input_mask': torch.zeros(merged_seq.shape, dtype=torch.bool, device=device),
'target_mask': torch.ones(merged_seq.shape, dtype=torch.bool, device=device),
'decoder_attention_mask': torch.zeros(merged_seq.shape, dtype=torch.bool, device=device),
}
return mod_dict