aroraaman's picture
Add all of `fourm`
3424266
raw
history blame
3.95 kB
# Copyright 2024 EPFL and Apple Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
from torch.utils.data import Dataset
from typing import Any, Callable, Dict, List, Optional, Tuple, cast
from fourm.data.multimodal_dataset_folder import make_dataset, UNIFIED_EXTENSIONS
from fourm.data.modality_transforms import get_transform_key, RGBTransform, CaptionTransform, UnifiedDataTransform
class ImageCaptionDataset(Dataset):
"""
Similar to MultiModalDatasetFolder, but specialized for image-caption datasets.
"""
def __init__(self,
root: str,
augmenter: Optional[Callable] = None,
modality_paths: Dict[str, str] = None,
is_valid_file: Optional[Callable[[str], bool]] = None,
cache=False):
self.root = root
self.modality_paths = modality_paths or {}
self.modality_transforms = {
'rgb': RGBTransform(imagenet_default_mean_and_std=False),
'caption': CaptionTransform()
}
self.transform = UnifiedDataTransform(transforms_dict=self.modality_transforms, image_augmenter=augmenter)
classes, class_to_idx = self._find_classes(os.path.join(self.root, self.modality_paths.get('caption', 'caption')))
extensions = UNIFIED_EXTENSIONS if is_valid_file is None else None
samples = {
mod: make_dataset(
os.path.join(self.root, self.modality_paths.get(mod, mod)),
class_to_idx,
extensions,
is_valid_file,
cache_path=os.path.join(self.root, 'dataloader_cache', f'{self.modality_paths.get(mod, mod)}.pkl') if cache else None)
for mod in ['caption', 'rgb']
}
for mod, mod_samples in samples.items():
if len(mod_samples) == 0:
msg = "Found 0 logs in subfolders of: {}\n".format(os.path.join(self.root, self.modality_paths.get(mod, mod)))
if extensions is not None:
msg += "Supported extensions are: {}".format(",".join(extensions))
raise RuntimeError(msg)
self.extensions = extensions
self.classes = classes
self.class_to_idx = class_to_idx
self.samples = samples
def _find_classes(self, dir: str) -> Tuple[List[str], Dict[str, int]]:
"""
Finds the class folders in a dataset.
Args:
dir (string): Root directory path.
Returns:
tuple: (classes, class_to_idx) where classes are relative to (dir), and class_to_idx is a dictionary.
Ensures:
No class is a subdirectory of another.
"""
classes = [d.name for d in os.scandir(dir) if d.is_dir()]
classes.sort()
class_to_idx = {cls_name: i for i, cls_name in enumerate(classes)}
return classes, class_to_idx
def __getitem__(self, index):
sample_dict = {}
for mod in ['caption', 'rgb']:
path, _ = self.samples[mod][index]
sample = self.modality_transforms[get_transform_key(mod)].load(path)
sample_dict[mod] = sample
if self.transform is not None:
sample_dict = self.transform(sample_dict)
return sample_dict
def __len__(self) -> int:
return len(list(self.samples.values())[0])