Spaces:
Runtime error
Runtime error
# Copyright 2024 EPFL and Apple Inc. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
import os | |
from torch.utils.data import Dataset | |
from typing import Any, Callable, Dict, List, Optional, Tuple, cast | |
from fourm.data.multimodal_dataset_folder import make_dataset, UNIFIED_EXTENSIONS | |
from fourm.data.modality_transforms import get_transform_key, RGBTransform, CaptionTransform, UnifiedDataTransform | |
class ImageCaptionDataset(Dataset): | |
""" | |
Similar to MultiModalDatasetFolder, but specialized for image-caption datasets. | |
""" | |
def __init__(self, | |
root: str, | |
augmenter: Optional[Callable] = None, | |
modality_paths: Dict[str, str] = None, | |
is_valid_file: Optional[Callable[[str], bool]] = None, | |
cache=False): | |
self.root = root | |
self.modality_paths = modality_paths or {} | |
self.modality_transforms = { | |
'rgb': RGBTransform(imagenet_default_mean_and_std=False), | |
'caption': CaptionTransform() | |
} | |
self.transform = UnifiedDataTransform(transforms_dict=self.modality_transforms, image_augmenter=augmenter) | |
classes, class_to_idx = self._find_classes(os.path.join(self.root, self.modality_paths.get('caption', 'caption'))) | |
extensions = UNIFIED_EXTENSIONS if is_valid_file is None else None | |
samples = { | |
mod: make_dataset( | |
os.path.join(self.root, self.modality_paths.get(mod, mod)), | |
class_to_idx, | |
extensions, | |
is_valid_file, | |
cache_path=os.path.join(self.root, 'dataloader_cache', f'{self.modality_paths.get(mod, mod)}.pkl') if cache else None) | |
for mod in ['caption', 'rgb'] | |
} | |
for mod, mod_samples in samples.items(): | |
if len(mod_samples) == 0: | |
msg = "Found 0 logs in subfolders of: {}\n".format(os.path.join(self.root, self.modality_paths.get(mod, mod))) | |
if extensions is not None: | |
msg += "Supported extensions are: {}".format(",".join(extensions)) | |
raise RuntimeError(msg) | |
self.extensions = extensions | |
self.classes = classes | |
self.class_to_idx = class_to_idx | |
self.samples = samples | |
def _find_classes(self, dir: str) -> Tuple[List[str], Dict[str, int]]: | |
""" | |
Finds the class folders in a dataset. | |
Args: | |
dir (string): Root directory path. | |
Returns: | |
tuple: (classes, class_to_idx) where classes are relative to (dir), and class_to_idx is a dictionary. | |
Ensures: | |
No class is a subdirectory of another. | |
""" | |
classes = [d.name for d in os.scandir(dir) if d.is_dir()] | |
classes.sort() | |
class_to_idx = {cls_name: i for i, cls_name in enumerate(classes)} | |
return classes, class_to_idx | |
def __getitem__(self, index): | |
sample_dict = {} | |
for mod in ['caption', 'rgb']: | |
path, _ = self.samples[mod][index] | |
sample = self.modality_transforms[get_transform_key(mod)].load(path) | |
sample_dict[mod] = sample | |
if self.transform is not None: | |
sample_dict = self.transform(sample_dict) | |
return sample_dict | |
def __len__(self) -> int: | |
return len(list(self.samples.values())[0]) |