Spaces:
Runtime error
Runtime error
# -------------------------------------------------------- | |
# Based on the ViTPose and 4DHumans code bases | |
# https://github.com/ViTAE-Transformer/ViTPose/ | |
# https://github.com/shubham-goel/4D-Humans | |
# -------------------------------------------------------- | |
import math | |
import torch | |
from functools import partial | |
import torch.nn as nn | |
import torch.nn.functional as F | |
import torch.utils.checkpoint as checkpoint | |
from timm.models.layers import drop_path, to_2tuple, trunc_normal_ | |
def vit(cfg): | |
return ViT( | |
img_size=(256, 192), | |
patch_size=16, | |
embed_dim=1280, | |
depth=32, | |
num_heads=16, | |
ratio=1, | |
use_checkpoint=False, | |
mlp_ratio=4, | |
qkv_bias=True, | |
drop_path_rate=0.55, | |
) | |
def get_abs_pos(abs_pos, h, w, ori_h, ori_w, has_cls_token=True): | |
""" | |
Calculate absolute positional embeddings. If needed, resize embeddings and remove cls_token | |
dimension for the original embeddings. | |
Args: | |
abs_pos (Tensor): absolute positional embeddings with (1, num_position, C). | |
has_cls_token (bool): If true, has 1 embedding in abs_pos for cls token. | |
hw (Tuple): size of input image tokens. | |
Returns: | |
Absolute positional embeddings after processing with shape (1, H, W, C) | |
""" | |
cls_token = None | |
B, L, C = abs_pos.shape | |
if has_cls_token: | |
cls_token = abs_pos[:, 0:1] | |
abs_pos = abs_pos[:, 1:] | |
if ori_h != h or ori_w != w: | |
new_abs_pos = F.interpolate( | |
abs_pos.reshape(1, ori_h, ori_w, -1).permute(0, 3, 1, 2), | |
size=(h, w), | |
mode="bicubic", | |
align_corners=False, | |
).permute(0, 2, 3, 1).reshape(B, -1, C) | |
else: | |
new_abs_pos = abs_pos | |
if cls_token is not None: | |
new_abs_pos = torch.cat([cls_token, new_abs_pos], dim=1) | |
return new_abs_pos | |
class DropPath(nn.Module): | |
"""Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks). | |
""" | |
def __init__(self, drop_prob=None): | |
super(DropPath, self).__init__() | |
self.drop_prob = drop_prob | |
def forward(self, x): | |
return drop_path(x, self.drop_prob, self.training) | |
def extra_repr(self): | |
return 'p={}'.format(self.drop_prob) | |
class Mlp(nn.Module): | |
def __init__(self, in_features, hidden_features=None, out_features=None, act_layer=nn.GELU, drop=0.): | |
super().__init__() | |
out_features = out_features or in_features | |
hidden_features = hidden_features or in_features | |
self.fc1 = nn.Linear(in_features, hidden_features) | |
self.act = act_layer() | |
self.fc2 = nn.Linear(hidden_features, out_features) | |
self.drop = nn.Dropout(drop) | |
def forward(self, x): | |
x = self.fc1(x) | |
x = self.act(x) | |
x = self.fc2(x) | |
x = self.drop(x) | |
return x | |
class Attention(nn.Module): | |
def __init__( | |
self, dim, num_heads=8, qkv_bias=False, qk_scale=None, attn_drop=0., | |
proj_drop=0., attn_head_dim=None,): | |
super().__init__() | |
self.num_heads = num_heads | |
head_dim = dim // num_heads | |
self.dim = dim | |
if attn_head_dim is not None: | |
head_dim = attn_head_dim | |
all_head_dim = head_dim * self.num_heads | |
self.scale = qk_scale or head_dim ** -0.5 | |
self.qkv = nn.Linear(dim, all_head_dim * 3, bias=qkv_bias) | |
self.attn_drop = nn.Dropout(attn_drop) | |
self.proj = nn.Linear(all_head_dim, dim) | |
self.proj_drop = nn.Dropout(proj_drop) | |
def forward(self, x): | |
B, N, C = x.shape | |
qkv = self.qkv(x) | |
qkv = qkv.reshape(B, N, 3, self.num_heads, -1).permute(2, 0, 3, 1, 4) | |
q, k, v = qkv[0], qkv[1], qkv[2] # make torchscript happy (cannot use tensor as tuple) | |
q = q * self.scale | |
attn = (q @ k.transpose(-2, -1)) | |
attn = attn.softmax(dim=-1) | |
attn = self.attn_drop(attn) | |
x = (attn @ v).transpose(1, 2).reshape(B, N, -1) | |
x = self.proj(x) | |
x = self.proj_drop(x) | |
return x | |
class Block(nn.Module): | |
def __init__(self, dim, num_heads, mlp_ratio=4., qkv_bias=False, qk_scale=None, | |
drop=0., attn_drop=0., drop_path=0., act_layer=nn.GELU, | |
norm_layer=nn.LayerNorm, attn_head_dim=None | |
): | |
super().__init__() | |
self.norm1 = norm_layer(dim) | |
self.attn = Attention( | |
dim, num_heads=num_heads, qkv_bias=qkv_bias, qk_scale=qk_scale, | |
attn_drop=attn_drop, proj_drop=drop, attn_head_dim=attn_head_dim | |
) | |
# NOTE: drop path for stochastic depth, we shall see if this is better than dropout here | |
self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity() | |
self.norm2 = norm_layer(dim) | |
mlp_hidden_dim = int(dim * mlp_ratio) | |
self.mlp = Mlp(in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer, drop=drop) | |
def forward(self, x): | |
x = x + self.drop_path(self.attn(self.norm1(x))) | |
x = x + self.drop_path(self.mlp(self.norm2(x))) | |
return x | |
class PatchEmbed(nn.Module): | |
""" Image to Patch Embedding | |
""" | |
def __init__(self, img_size=224, patch_size=16, in_chans=3, embed_dim=768, ratio=1): | |
super().__init__() | |
img_size = to_2tuple(img_size) | |
patch_size = to_2tuple(patch_size) | |
num_patches = (img_size[1] // patch_size[1]) * (img_size[0] // patch_size[0]) * (ratio ** 2) | |
self.patch_shape = (int(img_size[0] // patch_size[0] * ratio), int(img_size[1] // patch_size[1] * ratio)) | |
self.origin_patch_shape = (int(img_size[0] // patch_size[0]), int(img_size[1] // patch_size[1])) | |
self.img_size = img_size | |
self.patch_size = patch_size | |
self.num_patches = num_patches | |
self.proj = nn.Conv2d(in_chans, embed_dim, kernel_size=patch_size, stride=(patch_size[0] // ratio), padding=4 + 2 * (ratio//2-1)) | |
def forward(self, x, **kwargs): | |
B, C, H, W = x.shape | |
x = self.proj(x) | |
Hp, Wp = x.shape[2], x.shape[3] | |
x = x.flatten(2).transpose(1, 2) | |
return x, (Hp, Wp) | |
class HybridEmbed(nn.Module): | |
""" CNN Feature Map Embedding | |
Extract feature map from CNN, flatten, project to embedding dim. | |
""" | |
def __init__(self, backbone, img_size=224, feature_size=None, in_chans=3, embed_dim=768): | |
super().__init__() | |
assert isinstance(backbone, nn.Module) | |
img_size = to_2tuple(img_size) | |
self.img_size = img_size | |
self.backbone = backbone | |
if feature_size is None: | |
with torch.no_grad(): | |
training = backbone.training | |
if training: | |
backbone.eval() | |
o = self.backbone(torch.zeros(1, in_chans, img_size[0], img_size[1]))[-1] | |
feature_size = o.shape[-2:] | |
feature_dim = o.shape[1] | |
backbone.train(training) | |
else: | |
feature_size = to_2tuple(feature_size) | |
feature_dim = self.backbone.feature_info.channels()[-1] | |
self.num_patches = feature_size[0] * feature_size[1] | |
self.proj = nn.Linear(feature_dim, embed_dim) | |
def forward(self, x): | |
x = self.backbone(x)[-1] | |
x = x.flatten(2).transpose(1, 2) | |
x = self.proj(x) | |
return x | |
class ViT(nn.Module): | |
def __init__(self, | |
img_size=224, patch_size=16, in_chans=3, num_classes=80, embed_dim=768, depth=12, | |
num_heads=12, mlp_ratio=4., qkv_bias=False, qk_scale=None, drop_rate=0., attn_drop_rate=0., | |
drop_path_rate=0., hybrid_backbone=None, norm_layer=None, use_checkpoint=False, | |
frozen_stages=-1, ratio=1, last_norm=True, | |
patch_padding='pad', freeze_attn=False, freeze_ffn=False, | |
): | |
# Protect mutable default arguments | |
super(ViT, self).__init__() | |
norm_layer = norm_layer or partial(nn.LayerNorm, eps=1e-6) | |
self.num_classes = num_classes | |
self.num_features = self.embed_dim = embed_dim # num_features for consistency with other models | |
self.frozen_stages = frozen_stages | |
self.use_checkpoint = use_checkpoint | |
self.patch_padding = patch_padding | |
self.freeze_attn = freeze_attn | |
self.freeze_ffn = freeze_ffn | |
self.depth = depth | |
if hybrid_backbone is not None: | |
self.patch_embed = HybridEmbed( | |
hybrid_backbone, img_size=img_size, in_chans=in_chans, embed_dim=embed_dim) | |
else: | |
self.patch_embed = PatchEmbed( | |
img_size=img_size, patch_size=patch_size, in_chans=in_chans, embed_dim=embed_dim, ratio=ratio) | |
num_patches = self.patch_embed.num_patches | |
# since the pretraining model has class token | |
self.pos_embed = nn.Parameter(torch.zeros(1, num_patches + 1, embed_dim)) | |
dpr = [x.item() for x in torch.linspace(0, drop_path_rate, depth)] # stochastic depth decay rule | |
self.blocks = nn.ModuleList([ | |
Block( | |
dim=embed_dim, num_heads=num_heads, mlp_ratio=mlp_ratio, qkv_bias=qkv_bias, qk_scale=qk_scale, | |
drop=drop_rate, attn_drop=attn_drop_rate, drop_path=dpr[i], norm_layer=norm_layer, | |
) | |
for i in range(depth)]) | |
self.last_norm = norm_layer(embed_dim) if last_norm else nn.Identity() | |
if self.pos_embed is not None: | |
trunc_normal_(self.pos_embed, std=.02) | |
self._freeze_stages() | |
def _freeze_stages(self): | |
"""Freeze parameters.""" | |
if self.frozen_stages >= 0: | |
self.patch_embed.eval() | |
for param in self.patch_embed.parameters(): | |
param.requires_grad = False | |
for i in range(1, self.frozen_stages + 1): | |
m = self.blocks[i] | |
m.eval() | |
for param in m.parameters(): | |
param.requires_grad = False | |
if self.freeze_attn: | |
for i in range(0, self.depth): | |
m = self.blocks[i] | |
m.attn.eval() | |
m.norm1.eval() | |
for param in m.attn.parameters(): | |
param.requires_grad = False | |
for param in m.norm1.parameters(): | |
param.requires_grad = False | |
if self.freeze_ffn: | |
self.pos_embed.requires_grad = False | |
self.patch_embed.eval() | |
for param in self.patch_embed.parameters(): | |
param.requires_grad = False | |
for i in range(0, self.depth): | |
m = self.blocks[i] | |
m.mlp.eval() | |
m.norm2.eval() | |
for param in m.mlp.parameters(): | |
param.requires_grad = False | |
for param in m.norm2.parameters(): | |
param.requires_grad = False | |
def init_weights(self): | |
"""Initialize the weights in backbone. | |
Args: | |
pretrained (str, optional): Path to pre-trained weights. | |
Defaults to None. | |
""" | |
def _init_weights(m): | |
if isinstance(m, nn.Linear): | |
trunc_normal_(m.weight, std=.02) | |
if isinstance(m, nn.Linear) and m.bias is not None: | |
nn.init.constant_(m.bias, 0) | |
elif isinstance(m, nn.LayerNorm): | |
nn.init.constant_(m.bias, 0) | |
nn.init.constant_(m.weight, 1.0) | |
self.apply(_init_weights) | |
def get_num_layers(self): | |
return len(self.blocks) | |
def no_weight_decay(self): | |
return {'pos_embed', 'cls_token'} | |
def forward_features(self, x): | |
B, C, H, W = x.shape | |
x, (Hp, Wp) = self.patch_embed(x) | |
if self.pos_embed is not None: | |
# fit for multiple GPU training | |
# since the first element for pos embed (sin-cos manner) is zero, it will cause no difference | |
x = x + self.pos_embed[:, 1:] + self.pos_embed[:, :1] | |
for blk in self.blocks: | |
if self.use_checkpoint: | |
x = checkpoint.checkpoint(blk, x) | |
else: | |
x = blk(x) | |
x = self.last_norm(x) | |
xp = x.permute(0, 2, 1).reshape(B, -1, Hp, Wp).contiguous() | |
return xp | |
def forward(self, x): | |
x = self.forward_features(x) | |
return x | |
def train(self, mode=True): | |
"""Convert the model into training mode.""" | |
super().train(mode) | |
self._freeze_stages() | |