Spaces:
Runtime error
Runtime error
# Copyright 2024 EPFL and Apple Inc. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
import os | |
from pathlib import Path | |
import torch | |
from .dist import save_on_main, is_main_process | |
from .s3_utils import save_on_s3 | |
from torch.distributed.fsdp import ( | |
FullyShardedDataParallel as FSDP, | |
FullStateDictConfig, | |
StateDictType, | |
) | |
from torch.distributed.fsdp.api import FullOptimStateDictConfig | |
def save_model_fsdp(args, epoch, model, optimizer, model_ema=None, ckpt_name=None, use_s3=False): | |
output_dir = Path(args.output_dir) | |
epoch_name = str(epoch) | |
ckpt_name = ckpt_name or epoch_name | |
with FSDP.state_dict_type(model, | |
StateDictType.FULL_STATE_DICT, | |
FullStateDictConfig(offload_to_cpu=True, rank0_only=True), | |
FullOptimStateDictConfig(offload_to_cpu=True, rank0_only=True), | |
): | |
model_state_dict = model.state_dict() | |
if optimizer is not None: | |
optimizer_state_dict = FSDP.optim_state_dict(model, optimizer) | |
else: | |
optimizer_state_dict = None | |
# Only create the save_dict on the main process, not needed or recommended to do so on all ranks | |
# This make save_on_main() redundant | |
if is_main_process(): | |
checkpoint_path = os.path.join(output_dir, f'checkpoint-{ckpt_name}.pth') | |
to_save = { | |
'model': model_state_dict, | |
'epoch': epoch, | |
'args': args, | |
} | |
if optimizer is not None: | |
to_save['optimizer'] = optimizer_state_dict | |
if model_ema is not None: | |
print("Model EMA is currently not supported for FSDP") | |
# to_save['model_ema'] = get_state_dict(model_ema) | |
save_on_main(to_save, checkpoint_path) | |
if use_s3: | |
s3_path = os.path.join(args.s3_save_dir, f'checkpoint-{ckpt_name}.pth') | |
save_on_s3(checkpoint_path, s3_path, args.s3_endpoint) | |
def auto_load_model_fsdp(args, model, optimizer, model_ema=None): | |
output_dir = Path(args.output_dir) | |
if args.auto_resume and len(args.resume) == 0: | |
import glob | |
all_checkpoints = glob.glob(os.path.join(output_dir, 'checkpoint-*.pth')) | |
latest_ckpt = -1 | |
for ckpt in all_checkpoints: | |
t = ckpt.split('-')[-1].split('.')[0] | |
if t.isdigit(): | |
latest_ckpt = max(int(t), latest_ckpt) | |
if latest_ckpt >= 0: | |
args.resume = os.path.join(output_dir, 'checkpoint-%d.pth' % latest_ckpt) | |
print("Auto resume checkpoint: %s" % args.resume) | |
if args.resume: | |
if args.resume.startswith('https'): | |
checkpoint = torch.hub.load_state_dict_from_url( | |
args.resume, map_location='cpu') | |
else: | |
checkpoint = torch.load(args.resume, map_location='cpu') | |
with FSDP.state_dict_type( | |
model, | |
StateDictType.FULL_STATE_DICT, | |
FullStateDictConfig(rank0_only=False), | |
FullOptimStateDictConfig(rank0_only=False), | |
): | |
model.load_state_dict(checkpoint['model']) | |
print("Resume checkpoint %s" % args.resume) | |
if 'optimizer' in checkpoint and 'epoch' in checkpoint: | |
optimizer_state_dict = FSDP.optim_state_dict_to_load(checkpoint['optimizer'], model, optimizer) | |
optimizer.load_state_dict(optimizer_state_dict) | |
args.start_epoch = checkpoint['epoch'] + 1 | |
print("With optim & sched!") | |
if hasattr(args, 'model_ema') and args.model_ema: | |
print("Model EMA is currently not supported for FSDP") |