Spaces:
Runtime error
Runtime error
# Copyright 2024 EPFL and Apple Inc. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
# -------------------------------------------------------- | |
# Based on DETR code base | |
# https://github.com/facebookresearch/detr | |
# -------------------------------------------------------- | |
import datetime | |
import logging | |
import time | |
from collections import defaultdict, deque | |
import torch | |
import torch.distributed as dist | |
try: | |
import wandb | |
except: | |
pass | |
from .dist import is_dist_avail_and_initialized | |
class SmoothedValue(object): | |
"""Track a series of values and provide access to smoothed values over a | |
window or the global series average. | |
""" | |
def __init__(self, window_size=20, fmt=None): | |
if fmt is None: | |
fmt = "{median:.4f} ({global_avg:.4f})" | |
self.deque = deque(maxlen=window_size) | |
self.total = 0.0 | |
self.count = 0 | |
self.fmt = fmt | |
def update(self, value, n=1): | |
self.deque.append(value) | |
self.count += n | |
self.total += value * n | |
def synchronize_between_processes(self): | |
""" | |
Warning: does not synchronize the deque! | |
""" | |
if not is_dist_avail_and_initialized(): | |
return | |
t = torch.tensor([self.count, self.total], dtype=torch.float64, device='cuda') | |
dist.barrier() | |
dist.all_reduce(t) | |
t = t.tolist() | |
self.count = int(t[0]) | |
self.total = t[1] | |
def median(self): | |
d = torch.tensor(list(self.deque)) | |
return d.median().item() | |
def avg(self): | |
d = torch.tensor(list(self.deque), dtype=torch.float32) | |
return d.mean().item() | |
def global_avg(self): | |
return self.total / self.count | |
def max(self): | |
return max(self.deque) | |
def value(self): | |
return self.deque[-1] | |
def __str__(self): | |
return self.fmt.format( | |
median=self.median, | |
avg=self.avg, | |
global_avg=self.global_avg, | |
max=self.max, | |
value=self.value) | |
class MetricLogger(object): | |
def __init__(self, delimiter="\t"): | |
self.meters = defaultdict(SmoothedValue) | |
self.delimiter = delimiter | |
def update(self, **kwargs): | |
for k, v in kwargs.items(): | |
if v is None: | |
continue | |
if isinstance(v, torch.Tensor): | |
v = v.item() | |
assert isinstance(v, (float, int)) | |
self.meters[k].update(v) | |
def __getattr__(self, attr): | |
if attr in self.meters: | |
return self.meters[attr] | |
if attr in self.__dict__: | |
return self.__dict__[attr] | |
raise AttributeError("'{}' object has no attribute '{}'".format( | |
type(self).__name__, attr)) | |
def __str__(self): | |
loss_str = [] | |
for name, meter in self.meters.items(): | |
loss_str.append( | |
"{}: {}".format(name, str(meter)) | |
) | |
return self.delimiter.join(loss_str) | |
def synchronize_between_processes(self): | |
for meter in self.meters.values(): | |
meter.synchronize_between_processes() | |
def add_meter(self, name, meter): | |
self.meters[name] = meter | |
def log_every(self, iterable, print_freq, iter_len=None, header=None): | |
iter_len = iter_len if iter_len is not None else len(iterable) | |
i = 0 | |
if not header: | |
header = '' | |
start_time = time.time() | |
end = time.time() | |
iter_time = SmoothedValue(fmt='{avg:.4f}') | |
data_time = SmoothedValue(fmt='{avg:.4f}') | |
space_fmt = ':' + str(len(str(iter_len))) + 'd' | |
log_msg = [ | |
header, | |
'[{0' + space_fmt + '}/{1}]', | |
'eta: {eta}', | |
'{meters}', | |
'time: {time}', | |
'data: {data}' | |
] | |
if torch.cuda.is_available(): | |
log_msg.append('max mem: {memory:.0f}') | |
log_msg = self.delimiter.join(log_msg) | |
MB = 1024.0 * 1024.0 | |
for obj in iterable: | |
data_time.update(time.time() - end) | |
yield obj | |
iter_time.update(time.time() - end) | |
if i % print_freq == 0 or i == iter_len - 1: | |
if iter_len > 0: | |
eta_seconds = iter_time.global_avg * (iter_len - i) | |
eta_string = str(datetime.timedelta(seconds=int(eta_seconds))) | |
else: | |
eta_string = '?' | |
if torch.cuda.is_available(): | |
print(log_msg.format( | |
i, iter_len if iter_len > 0 else '?', eta=eta_string, | |
meters=str(self), | |
time=str(iter_time), data=str(data_time), | |
memory=torch.cuda.max_memory_allocated() / MB)) | |
else: | |
print(log_msg.format( | |
i, iter_len if iter_len > 0 else '?', eta=eta_string, | |
meters=str(self), | |
time=str(iter_time), data=str(data_time))) | |
i += 1 | |
end = time.time() | |
total_time = time.time() - start_time | |
total_time_str = str(datetime.timedelta(seconds=int(total_time))) | |
time_per_iter_str = '{:.4f}'.format(total_time / iter_len) if iter_len > 0 else '?' | |
print('{} Total time: {} ({} s / it)'.format( | |
header, total_time_str, time_per_iter_str)) | |
class WandbLogger(object): | |
def __init__(self, args): | |
wandb.init( | |
config=args, | |
entity=args.wandb_entity, | |
project=args.wandb_project, | |
group=getattr(args, 'wandb_group', None), | |
name=getattr(args, 'wandb_run_name', None), | |
tags=getattr(args, 'wandb_tags', None), | |
mode=getattr(args, 'wandb_mode', 'online'), | |
) | |
def wandb_safe_log(*args, **kwargs): | |
try: | |
wandb.log(*args, **kwargs) | |
except (wandb.CommError, BrokenPipeError): | |
logging.error('wandb logging failed, skipping...') | |
def set_step(self, step=None): | |
if step is not None: | |
self.step = step | |
else: | |
self.step += 1 | |
def update(self, metrics): | |
log_dict = dict() | |
for k, v in metrics.items(): | |
if v is None: | |
continue | |
if isinstance(v, torch.Tensor): | |
v = v.item() | |
log_dict[k] = v | |
self.wandb_safe_log(log_dict, step=self.step) | |
def flush(self): | |
pass | |
def finish(self): | |
try: | |
wandb.finish() | |
except (wandb.CommError, BrokenPipeError): | |
logging.error('wandb failed to finish') |