aroraaman's picture
Add all of `fourm`
3424266
raw
history blame
56 kB
# Copyright 2024 EPFL and Apple Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
import numpy as np
import torch
import torchvision.transforms.functional as TF
from einops import rearrange
import textwrap
import matplotlib.pyplot as plt
from PIL import Image
import cv2
from itertools import groupby
# For visualizing CLIP feature maps
from sklearn.decomposition import PCA
# Detectron2 for semantic segmentation visualizations
try:
from detectron2.utils.visualizer import ColorMode, Visualizer
from detectron2.data import MetadataCatalog
coco_metadata = MetadataCatalog.get("coco_2017_val_panoptic")
USE_DETECTRON = True
except Exception as e:
print(e)
print("Detectron2 can be used for semseg visualizations. Please install detectron2 to use this feature, or plotting will fall back to matplotlib.")
USE_DETECTRON = False
from fourm.data.modality_transforms import get_transform_key, get_transform_resolution, MetadataTransform
from fourm.utils.data_constants import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, COCO_SEMSEG_NUM_CLASSES
from fourm.utils import denormalize, get_sentinel_to_id_mapping, merge_span_masking
from fourm.utils.generation import unbatch
device = 'cuda' if torch.cuda.is_available() else 'cpu'
def tensor_to_images(tensor):
"""
Converts a (B C H W) tensor to numpy arrays.
If B = 1, the tensor is unbatched and converted to a single image.
If C = 1, the channel dimension is removed.
Args:
tensor (torch.Tensor): Tensor to convert to images.
"""
B, C, H, W = tensor.shape
if B == 1:
img = rearrange(unbatch(tensor), "c h w -> h w c")
else:
img = rearrange(tensor, "b c h w -> b h w c")
if C == 1:
img = img[..., 0]
return img.detach().cpu().numpy()
def pca_visualize(features, n_components=3):
"""
Visualizes a feature map using PCA.
Args:
features (torch.Tensor): CxHxW feature map to visualize.
n_components (int): Number of PCA components to use.
"""
C, H, W = features.shape
features_flat = rearrange(features.float(), 'c h w -> (h w) c').detach().cpu().numpy()
pca = PCA(n_components=n_components)
img_pca = rearrange(pca.fit_transform(features_flat), '(h w) c -> h w c', h=H, w=W)
img_pca = (img_pca - img_pca.min()) / (img_pca.max() - img_pca.min())
return img_pca
def np_squeeze(array, axis=0):
"""
Squeeses a numpy array along a given axis if that axis is one-dimensional.
Otherwise, it returns the same array.
Args:
array (numpy.ndarray): Array to squeeze.
axis (int): Axis to squeeze.
"""
if array.shape[axis] == 1:
return np.squeeze(array, axis=axis)
else:
return array
def decode_input_rgb(mod_dict, key='rgb'):
"""
Decodes (denormalizes) an RGB image from a model dictionary.
Args:
mod_dict (dict): Model output dictionary.
key (str): Key of the RGB modality to decode.
"""
img = denormalize(mod_dict[key]['tensor'])
return tensor_to_images(img)
def decode_tok_rgb(mod_dict, tokenizers, key='tok_rgb', image_size=224, patch_size=16, t=25, verbose=False):
"""
Decodes a sequence of RGB tokens from a model dictionary into an RGB image.
Args:
mod_dict (dict): Model output dictionary.
tokenizers (dict): Dictionary of tokenizers.
key (str): Key of the tokenized RGB modality to decode.
image_size (int): Size of the image.
patch_size (int): Size of the patches.
t (int): Number of timesteps to decode using the tokenizer diffusion model (if applicable).
verbose (bool): Whether to print the decoding progress.
"""
img_tok = rearrange(mod_dict[key]['tensor'], "b (nh nw) -> b nh nw", nh=image_size//patch_size, nw=image_size//patch_size)
rec = tokenizers[get_transform_key(key)].decode_tokens(img_tok, timesteps=t, image_size=image_size, verbose=verbose)
rec = denormalize(rec, (0.5, 0.5, 0.5), (0.5, 0.5, 0.5)).clamp(0, 1)
return tensor_to_images(rec)
def decode_tok_rgb_controlnet(mod_dict, tokenizers, key='tok_rgb', image_size=224, patch_size=16,
t=25, guidance_scale=2.5, cond_scale=0.8, verbose=False):
"""
Decodes a sequence of RGB tokens from a model dictionary into an RGB image using a ControlNet.
Args:
mod_dict (dict): Model output dictionary.
tokenizers (dict): Dictionary of tokenizers. Needs to contain the key 'controlnet'.
key (str): Key of the tokenized RGB modality to decode.
image_size (int): Size of the image.
patch_size (int): Size of the patches.
t (int): Number of timesteps to decode using the ControlNet.
guidance_scale (float): Classifier-free guidance scale.
cond_scale (float): ControlNet conditioning scale.
verbose (bool): Whether to print the decoding progress.
"""
img_tok = rearrange(mod_dict[key]['tensor'], "b (nh nw) -> b nh nw", nh=image_size//patch_size, nw=image_size//patch_size)
rec = tokenizers['controlnet'].decode_tokens(
img_tok, timesteps=t, guidance_scale=guidance_scale, cond_scale=cond_scale, verbose=verbose
)
rec = tokenizers['controlnet'].vae_decode(rec)
rec = denormalize(rec, (0.5, 0.5, 0.5), (0.5, 0.5, 0.5)).clamp(0, 1)
return tensor_to_images(rec)
def decode_tok_normal(mod_dict, tokenizers, key='tok_normal', image_size=224, patch_size=16, t=25, verbose=False):
"""
Decodes a sequence of surface normal tokens from a model dictionary into an RGB image.
Args:
mod_dict (dict): Model output dictionary.
tokenizers (dict): Dictionary of tokenizers.
key (str): Key of the tokenized normal modality to decode.
image_size (int): Size of the image.
patch_size (int): Size of the patches.
t (int): Number of timesteps to decode using the tokenizer diffusion model (if applicable).
verbose (bool): Whether to print the decoding progress.
"""
img_tok = rearrange(mod_dict[key]['tensor'], "b (nh nw) -> b nh nw", nh=image_size//patch_size, nw=image_size//patch_size)
rec = tokenizers[get_transform_key(key)].decode_tokens(img_tok, timesteps=t, image_size=image_size, verbose=verbose)
rec = denormalize(rec, (0.5, 0.5, 0.5), (0.5, 0.5, 0.5)).clamp(0, 1)
return tensor_to_images(rec)
def decode_tok_canny_edge(mod_dict, tokenizers, key='tok_canny_edge', image_size=224, patch_size=16, t=10, verbose=False):
"""
Decodes a sequence of Canny edges tokens from a model dictionary into an RGB image.
Args:
mod_dict (dict): Model output dictionary.
tokenizers (dict): Dictionary of tokenizers.
key (str): Key of the tokenized Canny edges modality to decode.
image_size (int): Size of the image.
patch_size (int): Size of the patches.
t (int): Number of timesteps to decode using the tokenizer diffusion model (if applicable).
verbose (bool): Whether to print the decoding progress.
"""
img_tok = rearrange(mod_dict[key]['tensor'], "b (nh nw) -> b nh nw", nh=image_size//patch_size, nw=image_size//patch_size)
rec = tokenizers[get_transform_key(key)].decode_tokens(img_tok, timesteps=t, image_size=image_size, verbose=verbose)
rec = (0.5*(rec+1)).clamp(0, 1)
return tensor_to_images(rec)
def decode_tok_sam_edge(mod_dict, tokenizers, key='tok_sam_edge', image_size=224, patch_size=16, t=10, verbose=False):
"""
Decodes a sequence of SAM edges from a model dictionary into an RGB image.
Args:
mod_dict (dict): Model output dictionary.
tokenizers (dict): Dictionary of tokenizers.
key (str): Key of the tokenized SAM edges modality to decode.
image_size (int): Size of the image.
patch_size (int): Size of the patches.
t (int): Number of timesteps to decode using the tokenizer diffusion model (if applicable).
verbose (bool): Whether to print the decoding progress.
"""
img_tok = rearrange(mod_dict[key]['tensor'], "b (nh nw) -> b nh nw", nh=image_size//patch_size, nw=image_size//patch_size)
rec = tokenizers[get_transform_key(key)].decode_tokens(img_tok, timesteps=t, image_size=image_size, verbose=verbose)
rec = (0.5*(rec+1)).clamp(0, 1)
return tensor_to_images(rec)
def decode_tok_depth(mod_dict, tokenizers, key='tok_depth', image_size=224, patch_size=16, t=25, verbose=False, cmap='turbo'):
"""
Decodes a sequence of depth tokens from a model dictionary into an RGB image.
Args:
mod_dict (dict): Model output dictionary.
tokenizers (dict): Dictionary of tokenizers.
key (str): Key of the tokenized depth modality to decode.
image_size (int): Size of the image.
patch_size (int): Size of the patches.
t (int): Number of timesteps to decode using the tokenizer diffusion model (if applicable).
verbose (bool): Whether to print the decoding progress.
cmap (str): Colormap to use for the depth image.
"""
img_tok = rearrange(mod_dict[key]['tensor'], "b (nh nw) -> b nh nw", nh=image_size//patch_size, nw=image_size//patch_size)
rec = tokenizers[get_transform_key(key)].decode_tokens(img_tok, timesteps=t, image_size=image_size, verbose=verbose)
rec = rec.detach().cpu().numpy()[:,0]
if cmap is None:
return rec
colormap = plt.get_cmap('turbo')
imgs = []
for img in rec:
img_norm = (img - np.min(img)) / (np.max(img) - np.min(img))
rgb_image = colormap(img_norm)[..., :3]
imgs.append(rgb_image)
rgb_image = np_squeeze(np.stack(imgs), axis=0)
return rgb_image
def decode_tok_semseg(rgb_img, mod_dict, tokenizers, key='tok_semseg', image_size=224, patch_size=16, use_detectron=True, return_logits=False):
"""
Decodes a sequence of semantic segmentation tokens from a model dictionary into an RGB image.
Args:
rgb_img (torch.Tensor): RGB image to overlay the semantic segmentation on.
mod_dict (dict): Model output dictionary.
tokenizers (dict): Dictionary of tokenizers.
key (str): Key of the tokenized semantic segmentation modality to decode.
image_size (int): Size of the image.
patch_size (int): Size of the patches.
use_detectron (bool): Uses detectron2's visualization for the semseg output.
"""
tokens = mod_dict[key]['tensor']
tokens = tokens.unsqueeze(0) if tokens.ndim == 1 else tokens
img_tok = rearrange(tokens, "b (nh nw) -> b nh nw", nh=image_size//patch_size, nw=image_size//patch_size)
rec = tokenizers[get_transform_key(key)].decode_tokens(img_tok).detach().cpu()
if return_logits:
return rec
semsegs = rec.argmax(1)
B, H, W = semsegs.shape
if not use_detectron:
return semsegs if B > 1 else semsegs[0]
else:
rgb_imgs = [rgb_img] * B
imgs = []
for rgb, semseg in zip(rgb_imgs, semsegs):
if USE_DETECTRON:
v = Visualizer(255*rgb, coco_metadata, scale=1.2, instance_mode=ColorMode.IMAGE_BW)
img = v.draw_sem_seg((semseg-1).cpu()).get_image() / 255.0
else:
colormap = plt.get_cmap('viridis')
img = colormap(semseg.cpu())[..., :3]
imgs.append(img)
imgs = np_squeeze(np.stack(imgs), axis=0)
return imgs
def decode_tok_clip(mod_dict, tokenizers, key='tok_clip', image_size=224, patch_size=16):
"""
Decodes a sequence of CLIP tokens from a model dictionary into an PCA representation.
Args:
mod_dict (dict): Model output dictionary.
key (str): Key of the tokenized CLIP modality to decode.
tokenizers (dict): Dictionary of tokenizers.
image_size (int): Size of the image.
patch_size (int): Size of the patches.
"""
n_patches = image_size // patch_size
img_tok = rearrange(mod_dict[key]['tensor'], "b (nh nw) -> b nh nw", nh=n_patches, nw=n_patches)
rec = tokenizers[get_transform_key(key)].decode_tokens(img_tok)
pca_viz = [pca_visualize(feat) for feat in rec]
pca_viz = np_squeeze(np.stack(pca_viz), axis=0)
return pca_viz
def decode_tok_dinov2(mod_dict, tokenizers, key='tok_dinov2', image_size=224, patch_size=14):
"""
Decodes a sequence of DINOv2 spatial tokens from a model dictionary into an PCA representation.
Args:
mod_dict (dict): Model output dictionary.
key (str): Key of the tokenized CLIP modality to decode.
tokenizers (dict): Dictionary of tokenizers.
image_size (int): Size of the image.
patch_size (int): Size of the patches.
"""
patch_size = 14
n_patches = image_size // patch_size
img_tok = rearrange(mod_dict[key]['tensor'], "b (nh nw) -> b nh nw", nh=n_patches, nw=n_patches)
rec = tokenizers[get_transform_key(key)].decode_tokens(img_tok)
pca_viz = [pca_visualize(feat) for feat in rec]
pca_viz = np_squeeze(np.stack(pca_viz), axis=0)
return pca_viz
def decode_tok_imagebind(mod_dict, tokenizers, key='tok_imagebind', image_size=224, patch_size=14):
"""
Decodes a sequence of ImageBind spatial tokens from a model dictionary into an PCA representation.
Args:
mod_dict (dict): Model output dictionary.
key (str): Key of the tokenized CLIP modality to decode.
tokenizers (dict): Dictionary of tokenizers.
image_size (int): Size of the image.
patch_size (int): Size of the patches.
"""
patch_size = 14
n_patches = image_size // patch_size
img_tok = rearrange(mod_dict[key]['tensor'], "b (nh nw) -> b nh nw", nh=n_patches, nw=n_patches)
rec = tokenizers[get_transform_key(key)].decode_tokens(img_tok)
pca_viz = [pca_visualize(feat) for feat in rec]
pca_viz = np_squeeze(np.stack(pca_viz), axis=0)
return pca_viz
def decode_tok_dinov2_global(mod_dict, tokenizers, key='tok_dinov2_global'):
"""
Decodes a sequence of DINOv2 global tokens from a model dictionary.
Args:
mod_dict (dict): Model output dictionary.
key (str): Key of the tokenized DINOv2 global token modality to decode.
tokenizers (dict): Dictionary of tokenizers.
image_size (int): Size of the image.
patch_size (int): Size of the patches.
"""
toks = rearrange(mod_dict[key]['tensor'].long(), 'b n -> b n 1 1')
rec = tokenizers[get_transform_key(key)].decode_tokens(toks)
return rec.squeeze()
def decode_tok_imagebind_global(mod_dict, tokenizers, key='tok_imagebind_global'):
"""
Decodes a sequence of ImageBind global tokens from a model dictionary.
Args:
mod_dict (dict): Model output dictionary.
key (str): Key of the tokenized ImageBind global token modality to decode.
tokenizers (dict): Dictionary of tokenizers.
image_size (int): Size of the image.
patch_size (int): Size of the patches.
"""
toks = rearrange(mod_dict[key]['tensor'].long(), 'b n -> b n 1 1')
rec = tokenizers[get_transform_key(key)].decode_tokens(toks)
return rec.squeeze()
def decode_color_palette(mod_dict, text_tokenizer, key='color_palette'):
"""
Decodes a sequence of color palettes from a model dictionary.
Args:
mod_dict (dict): Model output dictionary.
key (str): Key of the tokenized ImageBind modality to decode.
tokenizers (dict): Dictionary of tokenizers.
image_size (int): Size of the image.
patch_size (int): Size of the patches.
"""
decoded = decode_text(mod_dict, key, text_tokenizer)[2]
all_decoded = decoded if isinstance(decoded, list) else [decoded]
all_decoded = [d.replace(' [EOS]', '') for d in all_decoded]
all_decoded = [visualize_palettes_multi(d) for d in all_decoded]
all_decoded = all_decoded[0] if len(all_decoded) == 1 else all_decoded
return all_decoded
def decode_human_poses(mod_dict, tokenizers, text_tokenizer, key='human_poses'):
"""
Decodes human poses tokenized with text + BMLP
"""
decoded = decode_text(mod_dict, key, text_tokenizer)[2]
all_decoded = decoded if isinstance(decoded, list) else [decoded]
all_decoded = [d.replace(' [EOS]', '') for d in all_decoded]
imgs = []
for decoded in all_decoded:
img = np.ones((224,224,4))
if decoded != 'none':
try:
img = visualize_human_poses(decoded, tokenizers[key], mod_dict)
except Exception as e:
print('Error in decoding human poses. Packages required for plotting may not be installed. Trace:')
print(e)
imgs.append(img)
imgs = np_squeeze(np.stack(imgs), axis=0)
return imgs
metadata_transform = MetadataTransform(shuffle=False, random_trunc=False, return_chunks=False)
def _split_metadata_string(input_string):
result = []
current_subseq = []
for part in input_string.split():
# If we encounter a "v1" and there's already a subsequence being built,
# we add it to the result and start a new one
if 'v1' in part and current_subseq:
result.append(current_subseq)
current_subseq = []
current_subseq.append(part)
# Append any remaining subsequence to the result
if current_subseq:
result.append(current_subseq)
return result
def decode_metadata(mod_dict, text_tokenizer, key='metadata'):
"""
Decodes a sequence of metadata tokens into a dictionary of metadata.
Args:
mod_dict (dict): Model output dictionary.
key (str): Key of the metadata modality to decode.
text_tokenizer (tokenizers.Tokenizer): Text tokenizer.
"""
decoded = decode_text(mod_dict, key, text_tokenizer)[2]
all_decoded = decoded if isinstance(decoded, list) else [decoded]
all_decoded = [d.replace(' [EOS]', '').replace(' [PAD]', '') for d in all_decoded]
all_metadata = []
for decoded in all_decoded:
parts = _split_metadata_string(decoded)
invalid_parts = []
metadata_dict = {}
for part in parts:
# Check if part has been parsed correctly
if len(part) != 2:
invalid_parts.append(str(part))
continue
metadata_id, metadata_value = part
if (not metadata_id.startswith('v1=') or
not metadata_value.startswith('v0=') or
metadata_id not in metadata_transform.id_metadata_map):
invalid_parts.append(str(part))
# Parse metadata type and value
metadata_type = metadata_transform.id_metadata_map[metadata_id]
metadata_value = int(metadata_value.split('=')[1])
if metadata_type in metadata_transform.image_dim_modalities:
metadata_value *= metadata_transform.image_dim_bin_size
elif metadata_type in metadata_transform.metadata_min_max_bins:
vmin, vmax, bins = metadata_transform.metadata_min_max_bins[metadata_type]
metadata_value = (vmax - vmin) * (metadata_value / bins) + vmin
metadata_dict[metadata_type] = metadata_value
metadata_dict = {k: metadata_dict[k] for k in metadata_transform.metadata_id_map if k in metadata_dict}
all_metadata.append(metadata_dict)
all_metadata = all_metadata[0] if len(all_metadata) == 1 else all_metadata
return all_metadata
def decode_text(mod_dict, key, text_tokenizer):
"""
Decodes a text sequence from a model dictionary.
Args:
mod_dict (dict): Model output dictionary.
key (str): Key of the text modality to decode.
text_tokenizer (tokenizers.Tokenizer): Text tokenizer.
"""
input_texts, target_texts, merged_texts = [], [], []
sentinel_ids = set(get_sentinel_to_id_mapping(text_tokenizer).values())
B = mod_dict[key]['tensor'].shape[0]
for i in range(B):
input_seq = mod_dict[key]['tensor'][i]
input_seq = input_seq[mod_dict[key]['input_mask'][i] == 0]
input_seq = input_seq.tolist()
target_seq = mod_dict[key]['tensor'][i]
target_seq = target_seq[mod_dict[key]['target_mask'][i] == 0]
target_seq = target_seq.tolist()
merged_seq = merge_span_masking(input_seq, target_seq, sentinel_ids=sentinel_ids)
input_text = text_tokenizer.decode(input_seq, skip_special_tokens=False)
target_text = text_tokenizer.decode(target_seq, skip_special_tokens=False)
merged_text = text_tokenizer.decode(merged_seq, skip_special_tokens=False)
input_texts.append(input_text)
target_texts.append(target_text)
merged_texts.append(merged_text)
if B == 1:
input_texts, target_texts, merged_texts = input_texts[0], target_texts[0], merged_texts[0]
return input_texts, target_texts, merged_texts
def decode_sam_instances(mod_dict, tokenizers, text_tokenizer, key='sam_instance', image_size=224, token_len=16):
'''
Decodes a sequence of SAM instance tokens into the instance representation.
Args:
mod_dict (dict): Model output dictionary.
key (str): Key of the tokenized ImageBind modality to decode.
tokenizers (dict): Dictionary of tokenizers.
text_tokenizer (tokenizers.Tokenizer): Text tokenizer.
image_size (int): Size of the image.
token_len (int): Tokenized SAM instance token length.
'''
assert image_size == 224, 'SAM instance decoding only supports 224x224 images'
decoded = decode_text(mod_dict, key, text_tokenizer)[2]
all_decoded = decoded if isinstance(decoded, list) else [decoded]
all_decoded = [d.replace(' [EOS]', '') for d in all_decoded]
# Generate deterministic SAM color palette
rng = np.random.default_rng(seed=0)
sam_palette = [rng.integers(0, 255, size=3) for i in range(1000)]
def group_by_identifier(input_list, identifier):
'''
Groups the input_list [a,b,c,a,d,d,c,..] using the identifier a, in the following format:
[[b,c], [d,d,c], ...]
'''
return [list(group) for key, group in groupby(input_list, lambda x: x == identifier) if not key]
def map_locations(inp, tokens=False):
'''
Converts v0, v1, v2, v3 textual representation into int.
When tokens=True, inp is mapped to its corresponding token id.
'''
if '=' not in inp:
return None
axis, position = inp.split("=")
try:
position = int(position)
except:
return None
if tokens:
if axis == 'v0':
return position
else:
return position + 512
return position
def iou(box1, box2):
'''
Calculates iou of the input bounding boxes
'''
# Calculate the coordinates of the intersection rectangle
x1 = max(box1[0], box2[0])
y1 = max(box1[1], box2[1])
x2 = min(box1[2], box2[2])
y2 = min(box1[3], box2[3])
# Calculate the area of the intersection
intersection_area = max(0, x2 - x1) * max(0, y2 - y1)
# Calculate the areas of the individual bounding boxes
area_box1 = (box1[2] - box1[0]) * (box1[3] - box1[1])
area_box2 = (box2[2] - box2[0]) * (box2[3] - box2[1])
# Calculate the union area
union_area = area_box1 + area_box2 - intersection_area
# Calculate and return the IoU
return intersection_area / union_area
all_sam_instances = []
for decoded in all_decoded:
tokens_per_sample = []
bboxes_per_sample = []
areas_per_sample = []
parts = decoded.split()
for part in group_by_identifier(parts, identifier='point'):
instances = part[2:]
# Ignore 'none' cases
if len(instances) <= 1:
continue
for positions in group_by_identifier(part, identifier='polygon'):
# Ignore incomplete polygons
if len(positions) != token_len + 4:
continue
bbox, tokens = positions[:4], positions[4:]
min_w, min_h, max_w, max_h = map(map_locations, bbox)
# Ignore the cases where the bounding box is prediction is in incorrect format
if None in [min_w, max_w, min_h, max_h] or (min_w >= max_w or min_h >= max_h):
continue
bbox = np.array([min_h, min_w, max_h, max_w])
tokens = list(map(lambda x: map_locations(x, tokens=True), tokens))
if None in tokens:
continue
tokens = np.array(tokens)
tokens_per_sample.append(tokens)
bboxes_per_sample.append(bbox)
areas_per_sample.append((max_w - min_w) * (max_h - min_h))
final_instances = np.zeros((image_size, image_size, 3), dtype=np.uint8)
if len(areas_per_sample) == 0:
return final_instances
# Sort the instance masks by area
areas_per_sample = np.array(areas_per_sample)
sorted_idx = np.argsort(-areas_per_sample)
tokens_per_sample = np.stack(tokens_per_sample)[sorted_idx]
bboxes_per_sample = np.stack(bboxes_per_sample)[sorted_idx]
# Decoded tokens
tokens_per_sample = torch.LongTensor(tokens_per_sample).reshape(-1, 4, 4).to(device)
decoded_tokens = tokenizers[key].decode_tokens(tokens_per_sample)
instances = torch.sigmoid(decoded_tokens).squeeze(1).cpu().detach().numpy()
# Filter and group instances
representive_masks = []
representive_bboxes = []
for (mask, bbox) in zip(instances, bboxes_per_sample):
# Filter out unusual masks
if (mask.max() - mask.min()) < 0.9:
continue
# Groups the duplicated instance masks
duplicated_flag = False
for rms, rbs in zip(representive_masks, representive_bboxes):
rm, rb = rms[0], rbs[0]
sim_score = 2 * ((rm * mask).sum() + 0.01) / (rm.sum() + mask.sum() + 0.01)
box_iou = iou(rb, bbox)
# If the similarity and IoU are high, consider them as the same instance and group them
if sim_score > 0.8 and box_iou > 0.9:
# Add the mask to its corresponding group
rms.append(mask)
rbs.append(bbox)
duplicated_flag = True
break
if not duplicated_flag:
representive_masks.append([mask])
representive_bboxes.append([bbox])
# Plot the instances
for i, (rms, rbs) in enumerate(zip(representive_masks, representive_bboxes)):
mask = np.mean(rms, axis=0)
bbox = np.mean(rbs, axis=0).astype(np.int32)
min_h, min_w, max_h, max_w = bbox.tolist()
mask = cv2.resize(mask, (max_w - min_w, max_h - min_h), interpolation=cv2.INTER_CUBIC)
max_w, max_h = min(max_w, final_instances.shape[1]), min(max_h, final_instances.shape[0])
mask = mask[:max_h - min_h,:max_w - min_w] > 0.5
final_instances[min_h:max_h, min_w:max_w, :][mask] = sam_palette[i]
all_sam_instances.append(final_instances)
all_sam_instances = all_sam_instances[0] if len(all_sam_instances) == 1 else np.stack(all_sam_instances)
return all_sam_instances
def decode_dict(mod_dict, tokenizers, text_tokenizer, image_size=224, patch_size=16,
decoding_steps=25, activate_controlnet=False, controlnet_guidance_scale=2.5, controlnet_cond_scale=0.8,
to_rgb=True, seed=None):
"""
Decodes the model output dictionary into a dictionary of images and text.
Args:
mod_dict (dict): Model output dictionary.
tokenizers (dict): Dictionary of tokenizers.
text_tokenizer (tokenizers.Tokenizer): Text tokenizer.
image_size (int): Image size.
patch_size (int): Patch size.
decoding_steps (int): Number of diffusion decoding steps (if applicable).
activate_controlnet (bool): Whether to activate the RGB ControlNet and override the RGB detokenizer.
controlnet_guidance_scale (float): Classifier-free guidance scale for the ControlNet.
controlnet_cond_scale (float): ControlNet conditioning scale.
"""
dec_dict = {}
for key in mod_dict:
k, res = get_transform_key(key), get_transform_resolution(key, image_size, to_tuple=False)
if k == 'rgb':
decoded = decode_input_rgb(mod_dict, key=key)
elif k == 'tok_rgb':
if not activate_controlnet or 'controlnet' not in tokenizers:
decoded = decode_tok_rgb(
mod_dict, tokenizers, key=key,
image_size=res, patch_size=patch_size,
t=decoding_steps, verbose=False
)
else:
decoded = decode_tok_rgb_controlnet(
mod_dict, tokenizers, key=key,
image_size=res, patch_size=patch_size,
t=decoding_steps, guidance_scale=controlnet_guidance_scale,
cond_scale=controlnet_cond_scale, verbose=False
)
elif k == 'tok_canny_edge':
decoded = decode_tok_canny_edge(
mod_dict, tokenizers, key=key,
image_size=res, patch_size=patch_size,
t=decoding_steps, verbose=False
)
elif k == 'tok_sam_edge':
decoded = decode_tok_sam_edge(
mod_dict, tokenizers, key=key,
image_size=res, patch_size=patch_size,
t=decoding_steps, verbose=False
)
elif k == 'tok_normal':
decoded = decode_tok_normal(
mod_dict, tokenizers, key=key,
image_size=res, patch_size=patch_size,
t=decoding_steps, verbose=False
)
elif k == 'tok_depth':
decoded = decode_tok_depth(
mod_dict, tokenizers, key=key,
image_size=res, patch_size=patch_size,
t=decoding_steps, verbose=False, cmap='turbo' if to_rgb else None
)
elif k == 'tok_semseg':
decoded = decode_tok_semseg(
np.ones((res, res, 3)), mod_dict, tokenizers, key=key,
image_size=res, patch_size=patch_size, return_logits=not to_rgb
)
elif k == 'tok_clip':
decoded = decode_tok_clip(
mod_dict, tokenizers, key=key,
image_size=res, patch_size=patch_size
)
elif k == 'tok_dinov2':
decoded = decode_tok_dinov2(
mod_dict, tokenizers, key=key,
image_size=res, patch_size=patch_size
)
elif k == 'tok_dinov2_global':
decoded = decode_tok_dinov2_global(
mod_dict, tokenizers, key=key
)
elif k == 'tok_imagebind':
decoded = decode_tok_imagebind(
mod_dict, tokenizers, key=key,
image_size=res, patch_size=patch_size
)
elif k == 'tok_imagebind_global':
decoded = decode_tok_imagebind_global(
mod_dict, tokenizers, key=key
)
elif k == 'color_palette':
decoded = decode_color_palette(
mod_dict, text_tokenizer, key=key
)
elif k == 'human_poses':
decoded = decode_human_poses(
mod_dict, tokenizers, text_tokenizer, key=key
)
elif k in ['caption', 'det']:
decoded = decode_text(mod_dict, key, text_tokenizer)[2]
decoded = decoded if isinstance(decoded, list) else [decoded]
decoded = [d.replace(' [EOS]', '') for d in decoded]
elif k in ['metadata']:
decoded = decode_metadata(
mod_dict, text_tokenizer, key=key
)
elif k == 'sam_instance':
decoded = decode_sam_instances(
mod_dict, tokenizers, text_tokenizer,
key=key, image_size=224,
)
elif k in ['t5_caption']:
if 'ascii_tensor' in mod_dict[key]:
decoded = []
for ascii_tensor in mod_dict[key]['ascii_tensor']:
ascii_values = ascii_tensor.flatten().tolist()
decoded_text = ''.join(chr(val) for val in ascii_values if val != 0)
decoded.append(f"T5-XXL embedding of: {decoded_text}")
decoded = decoded[0] if len(decoded) == 1 else decoded
else:
decoded = "T5-XXL embedding"
dec_dict[key] = decoded
return dec_dict
# Plotting utils
MOD_PRINT_NAMES = {
'rgb': 'RGB',
'tok_rgb': 'RGB (tok)',
'tok_normal': 'Normal (tok)',
'tok_depth': 'Depth (tok)',
'tok_semseg': 'Semseg (tok)',
'tok_clip': 'CLIP (tok)',
'tok_canny': 'Canny (tok)',
'tok_sam': 'SAM (tok)',
'sam_instance': 'SAM Instances (tok)',
'rgb@224': 'RGB@224',
'tok_rgb@224': 'RGB@224 (tok)',
'tok_normal@224': 'Normal@224 (tok)',
'tok_depth@224': 'Depth@224 (tok)',
'tok_semseg@224': 'Semseg@224 (tok)',
'tok_clip@224': 'CLIP@224 (tok)',
'rgb@448': 'RGB@448',
'tok_rgb@448': 'RGB@448 (tok)',
'tok_normal@448': 'Normal@448 (tok)',
'tok_depth@448': 'Depth@448 (tok)',
'tok_semseg@448': 'Semseg@448 (tok)',
'tok_clip@448': 'CLIP@448 (tok)',
'caption': 'Caption',
'det': 'Detection',
't5_caption': 'T5 XXL',
'metadata': 'Metadata',
'human_poses': 'Human poses',
'color_palette': 'Color palette',
'tok_dinov2': 'DINOv2 (tok)',
'tok_dinov2_global': 'DINOv2 global (tok)',
'tok_imagebind': 'ImageBind (tok)',
'tok_imagebind_global': 'ImageBind global (tok)',
}
def remove_ticks_and_labels(ax):
"""
Remove the axis ticks and labels
Args:
ax (matplotlib.axes.Axes): Axis to remove ticks and labels from
"""
ax.set_xticks([])
ax.set_yticks([])
ax.set_xticklabels([])
ax.set_yticklabels([])
def remove_spines(ax):
"""
Removes the spines from the given axis.
Args:
ax (matplotlib.axes.Axes): Axis to remove spines from
"""
ax.spines['top'].set_visible(False)
ax.spines['right'].set_visible(False)
ax.spines['bottom'].set_visible(False)
ax.spines['left'].set_visible(False)
def convert_string_to_bboxes(bboxes_str, bins=1000):
"""
Converts a string of bboxes to a list of bboxes.
Args:
bboxes_str (str): String of bboxes
bins (int): Number of bins (default: 1000)
"""
bboxes_str = bboxes_str.split(" ")
bboxes = []
for token in bboxes_str:
if "=" in token:
coord = token.split("=")[1]
coord = float(coord) / (bins - 1)
if token.startswith("v0="):
bboxes.append([coord,])
else:
bboxes[-1].append(coord)
elif len(bboxes[-1]) == 4:
bboxes[-1].append(token)
else:
bboxes[-1][4] = " ".join([bboxes[-1][4], token])
bboxes = [bbox for bbox in bboxes if len(bbox) == 5]
return bboxes
def visualize_palettes_multi(palettes):
palettes = palettes.split()
palettes = palettes[1:]
all_colors = []
for ii in range(len(palettes)):
all_colors.append(int(palettes[ii][3:]))
w = h = 25
# construct palette image
o = Image.new("RGB", size=(w * len(palettes)//3, h * len(palettes)//3))
arr = np.asarray(o).copy()
for ii in range(len(palettes)//3):
arr[:, ii * h : (ii + 1) * h, :] = all_colors[ii*3:(ii+1)*3]
final_palette = arr / 255
return final_palette
BOX_COLOR = (255, 0, 0) # Red
TEXT_COLOR = (255, 255, 255) # White
try:
from fourm.utils.hmr2_utils.hmr2.models.smpl_wrapper import SMPL
from fourm.utils.hmr2_utils.hmr2.utils.renderer import Renderer, cam_crop_to_full
import pickle as pkl
LIGHT_BLUE=(0.65098039, 0.74117647, 0.85882353)
with open('./fourm/utils/hmr2_utils/model_cfg.pkl','rb') as f:
pose_model_cfg = pkl.load(f)
# Instantiate SMPL model
smpl_cfg = {k.lower(): v for k,v in dict(pose_model_cfg.SMPL).items()}
smpl_cfg['model_path'] = './fourm/utils/hmr2_utils/data/smpl'
smpl_cfg['joint_regressor_extra'] = './fourm/utils/hmr2_utils/data/SMPL_to_J19.pkl'
smpl_cfg['mean_params'] = './fourm/utils/hmr2_utils/data/smpl_mean_params.npz'
smpl = SMPL(**smpl_cfg)
# Setup the renderer
renderer = Renderer(pose_model_cfg, faces=smpl.faces)
except Exception as e:
print(e)
print('Human pose dependencies are not installed, hence poses will not be visualized. To visualize them (optional), you can do the following: \n' \
'1) Install via `pip install timm yacs smplx pyrender pyopengl==3.1.4` \n' \
' You may need to follow the pyrender install instructions: https://pyrender.readthedocs.io/en/latest/install/index.html \n' \
'2) Download SMPL data from https://smpl.is.tue.mpg.de/. See https://github.com/shubham-goel/4D-Humans/ for an example. \n' \
'3) Copy the required SMPL files (smpl_mean_params.npz, SMPL_to_J19.pkl, smpl/SMPL_NEUTRAL.pkl) to fourm/utils/hmr2_utils/data .')
def visualize_human_poses(pose, poses_tokenizer, mod_dict):
full_gts = pose
full_gts = full_gts.split()
num_instances = len(full_gts) // 39 # total length of a pose instance seq is 39
all_verts = []
all_cam_t = []
for inst in range(num_instances):
try:
full_gt = full_gts[inst*39:(inst+1)*39]
##create the pose params dict
all_params = {}
all_params['bbox_xyxy'] = torch.Tensor((int(full_gt[1][3:])/999*224, int(full_gt[2][3:])/999*224, int(full_gt[3][3:])/999*224, int(full_gt[4][3:])/999*224))
all_params["box_center"] = torch.cat(( ((all_params["bbox_xyxy"][0] + all_params["bbox_xyxy"][2]) / 2.).unsqueeze(0).unsqueeze(1) , ( (all_params["bbox_xyxy"][1] + all_params["bbox_xyxy"][3]) / 2.).unsqueeze(0).unsqueeze(1) ), dim = 1)
all_params["box_size"] = torch.max((all_params["box_center"][0,0] - all_params["bbox_xyxy"][0]) * 2 , (all_params["box_center"][0,1] - all_params["bbox_xyxy"][1]) * 2 )
all_params["img_size"] = torch.Tensor([224., 224.])
all_params["img_size"] = all_params["img_size"].unsqueeze(0)
all_params["focal_length"] = torch.Tensor([5000., 5000.])
for ii in range(len(full_gt)):
if full_gt[ii] == 'camera':
all_params['pred_cam'] = torch.Tensor([ (int(full_gt[ii+1][3:])-49.95)/49.95, (int(full_gt[ii+2][3:])-49.95)/49.95, (int(full_gt[ii+3][3:])-49.95)/49.95 ])
break
all_params['pred_cam'] = all_params['pred_cam'].unsqueeze(0)
all_params['pred_smpl_params'] = {}
for ii in range(len(full_gt)):
if full_gt[ii] == 'shape':
all_params['pred_smpl_params']['betas'] = torch.Tensor([ (int(full_gt[ii+1][3:])-499.5)/166.5, (int(full_gt[ii+2][3:])-499.5)/166.5, (int(full_gt[ii+3][3:])-499.5)/166.5, (int(full_gt[ii+4][3:])-499.5)/166.5, (int(full_gt[ii+5][3:])-499.5)/166.5, (int(full_gt[ii+6][3:])-499.5)/166.5, (int(full_gt[ii+7][3:])-499.5)/166.5, (int(full_gt[ii+8][3:])-499.5)/166.5, (int(full_gt[ii+9][3:])-499.5)/166.5, (int(full_gt[ii+10][3:])-499.5)/166.5 ])
break
all_params['pred_smpl_params']['betas'] = all_params['pred_smpl_params']['betas'].unsqueeze(0)
for ii in range(len(full_gt)):
if full_gt[ii] == 'global':
all_params['pred_smpl_params']['global_orient'] = torch.Tensor( [ [(int(full_gt[ii+1][3:])-499.5)/499.5, (int(full_gt[ii+2][3:])-499.5)/499.5, (int(full_gt[ii+3][3:])-499.5)/499.5 ] , [ (int(full_gt[ii+4][3:])-499.5)/499.5, (int(full_gt[ii+5][3:])-499.5)/499.5, (int(full_gt[ii+6][3:])-499.5)/499.5], [(int(full_gt[ii+7][3:])-499.5)/499.5, (int(full_gt[ii+8][3:])-499.5)/499.5, (int(full_gt[ii+9][3:])-499.5)/499.5 ] ] )
break
all_params['pred_smpl_params']['global_orient'] = all_params['pred_smpl_params']['global_orient'].unsqueeze(0).unsqueeze(0)
body_poses = torch.FloatTensor()
for ii in range(len(full_gt)):
if full_gt[ii] == 'pose':
pose_start = ii
break
for ii in range(8):
pose_curr = ii + pose_start + 1
if 'v1' in full_gt[pose_curr]:
poses_curr = torch.Tensor([int(full_gt[pose_curr][3:])+512])
else:
poses_curr = torch.Tensor([int(full_gt[pose_curr][3:])])
poses_curr = poses_curr
body_poses = torch.cat((body_poses,poses_curr), dim=0)
body_poses = body_poses.long()
body_poses = body_poses.unsqueeze(0).unsqueeze(2).unsqueeze(2).to(device)
body_poses = poses_tokenizer.decode_tokens(body_poses).squeeze(2).squeeze().reshape(1,23,3,3).cpu()
all_params['pred_smpl_params']['body_pose'] = body_poses
smpl_params = (all_params['pred_smpl_params'])
smpl_output = smpl(**{k: v.float().cpu() for k,v in smpl_params.items()}, pose2rot=False)
for n in range(smpl_output.vertices.size(0)):
# Add all verts and cams to list
verts = smpl_output.vertices[n].detach().cpu().numpy()
img_size = all_params["img_size"].float()
pred_cam = all_params['pred_cam']
box_center = all_params["box_center"].float()
box_size = all_params["box_size"].float()
scaled_focal_length = pose_model_cfg.EXTRA.FOCAL_LENGTH / pose_model_cfg.MODEL.IMAGE_SIZE * img_size.max()
pred_cam_t_full = cam_crop_to_full(pred_cam, box_center, box_size, img_size, scaled_focal_length).detach().cpu().numpy()
cam_t = pred_cam_t_full[n]
all_verts.append(verts)
all_cam_t.append(cam_t)
except Exception as e:
print('Error in decoding human poses: ', end='')
print(e)
continue
try:
input_img = denormalize(mod_dict['rgb@224']['tensor'].squeeze(), mean=(IMAGENET_DEFAULT_MEAN), std=IMAGENET_DEFAULT_STD).permute(1,2,0).cpu()
except Exception as e:
print(e)
input_img = 1.
if 'tok_rgb' in mod_dict:
input_img = decode_tok_rgb(mod_dict, toks, key='tok_rgb')
# Render front view
input_img_overlay = 0.5* input_img[:,:,:3]
if len(all_verts) > 0:
misc_args = dict(
mesh_base_color=LIGHT_BLUE,
scene_bg_color=(1, 1, 1),
focal_length=scaled_focal_length,
)
cam_view = renderer.render_rgba_multiple(all_verts, cam_t=all_cam_t, render_res=img_size[n], **misc_args)
mask = (cam_view[:,:,0]<1.).astype(int)[:,:,None]
input_img_overlay = 0.5* input_img[:,:,:3] * (1-mask) + cam_view[:,:,:3] * mask
return input_img_overlay
def visualize_bboxes(img, bboxes_str, color=BOX_COLOR, thickness=2):
"""
Visualizes bounding boxes on the image.
Args:
img (np.array): Image to draw bounding boxes on.
bboxes_str (str): String containing bounding boxes in the format:
v0=1 v1=2 v2=3 v3=4 class_name ..., where
v0 is xmin, v1 is ymin, v2 is xmax, v3 is ymax
color (tuple): Color of the bounding box.
thickness (int): Thickness of the bounding box.
"""
if img is None:
img = 255 * np.ones((256,256,3), dtype=np.int32)
img = img.copy()
bboxes_str = bboxes_str.replace('[PAD]', '')
if len(bboxes_str.replace('[EOS]', '')) == 0:
return img
try:
bboxes = convert_string_to_bboxes(bboxes_str.replace(' [EOS]', ''))
except:
return img
for bbox in bboxes:
x_min, y_min, x_max, y_max, class_name = bbox
img_h, img_w = img.shape[0], img.shape[1]
x_min, x_max, y_min, y_max = int(x_min * img_w), int(x_max * img_w), int(y_min * img_h), int(y_max * img_h)
cv2.rectangle(img, (x_min, y_min), (x_max, y_max), color=color, thickness=thickness)
((text_width, text_height), _) = cv2.getTextSize(class_name.rstrip(), cv2.FONT_HERSHEY_SIMPLEX, 0.35, 1)
cv2.rectangle(img, (x_min, y_min - int(1.3 * text_height)), (x_min + text_width, y_min), BOX_COLOR, -1)
cv2.putText(
img,
text=f"{class_name}",
org=(x_min, y_min - int(0.3 * text_height)),
fontFace=cv2.FONT_HERSHEY_SIMPLEX,
fontScale=0.35,
color=TEXT_COLOR,
lineType=cv2.LINE_AA,
)
return img
def plot_text_in_square(ax, text, padding=0.5, fontsize=14, wrap_width=50):
"""
Plots text in a square.
Args:
ax (matplotlib.axes.Axes): Matplotlib axis to plot on
text (str): Text to plot
padding (float): Padding around the text
fontsize (int): Font size of the text
wrap_width (int): Width of the text to wrap
"""
ax.set_xlim(0, 1)
ax.set_ylim(0, 1)
if isinstance(text, list):
text = text[0]
text = text.replace('[PAD]', '')
# Wrap the text if necessary
wrapped_text = textwrap.fill(text, int(wrap_width))
# Add the padding
bbox_props = dict(boxstyle="square,pad=" + str(padding), facecolor="white", edgecolor="black")
# Add the text to the plot
ax.text(0.5, 0.5, wrapped_text, ha='center', va='center', fontsize=fontsize, bbox=bbox_props)
remove_ticks_and_labels(ax)
remove_spines(ax)
def text_to_pil_image(text, padding=0.5, fontsize=14, wrap_width=40, image_size=(512, 512)):
"""
Converts text to a PIL image.
Args:
text (str): Text to convert to image
padding (float): Padding around the text
fontsize (int): Font size of the text
wrap_width (int): Width of the text to wrap
image_size (tuple): Size of the output image (width, height)
Returns:
PIL.Image.Image: Generated image with the text
"""
fig, ax = plt.subplots(figsize=(image_size[0] / 100, image_size[1] / 100), dpi=100)
ax.set_xlim(0, 1)
ax.set_ylim(0, 1)
if isinstance(text, list):
text = text[0]
text = text.replace('[PAD]', '')
# Wrap the text if necessary
wrapped_text = textwrap.fill(text, wrap_width)
# Add the padding
bbox_props = dict(boxstyle="square,pad=" + str(padding), facecolor="white", edgecolor="black")
# Add the text to the plot
ax.text(0.5, 0.5, wrapped_text, ha='center', va='center', fontsize=fontsize, bbox=bbox_props)
# Remove ticks, labels, and spines
ax.set_xticks([])
ax.set_yticks([])
for spine in ax.spines.values():
spine.set_visible(False)
# Convert the plot to a PIL image
fig.canvas.draw()
image = np.frombuffer(fig.canvas.tostring_rgb(), dtype=np.uint8)
image = image.reshape(fig.canvas.get_width_height()[::-1] + (3,))
plt.close(fig)
return Image.fromarray(image)
def plot_modality(dec_dict, key, ax, figscale=4.0):
"""
Plots a single modality. Function name has a typo because of legacy reasons.
Args:
dec_dict (dict): Dictionary of decoded modalities
key (str): Key of the modality to plot
ax (matplotlib.axes.Axes): Matplotlib axis to plot on
figscale (float): Scaling factor for the figure (used to scale the caption box)
"""
modality = dec_dict[key]
k = get_transform_key(key)
if 'tok' in k or k == 'rgb' or k == 'human_poses' or k == 'color_palette':
ax.imshow(modality.clip(0,1))
elif k == 'caption':
plot_text_in_square(ax, modality, wrap_width=max(1,int(7*figscale))) # 7*figscale turns out to make caption box fit nicely
elif k == 't5_caption':
plot_text_in_square(ax, modality, wrap_width=max(1,int(7*figscale))) # 7*figscale turns out to make caption box fit nicely
elif k == 'metadata':
modality = ',\n'.join([f'{k}: {v:.2f}' if isinstance(v, float) else f'{k}: {v}' for k, v in modality.items()])
plot_text_in_square(ax, modality, wrap_width=max(1,int(7*figscale)), fontsize=11)
elif k == 'det':
bbox_img = visualize_bboxes(np.ones((224,224,3)), modality, thickness=2)
ax.imshow(bbox_img.clip(0,1))
def plot_conds_and_targets(cond_domains, target_domains, dec_dicts, save_path=None, fs_titles=15, figscale=4.0, dpi=100):
"""
Plots the conditioning and target modalities for a batch of samples.
Args:
cond_domains (list of str): List of conditioning domains
target_domains (list of str): List of target domains
dec_dicts (list of dicts): List of dictionaries containing the decoded conditioning and target modalities
save_path (str): Path to save the figure. If None, the figure is not saved but plotted instead.
fs_titles (int): Font size of the titles
figscale (float): Scaling factor for the figure size (minimum 4.0 for good results)
dpi (float): Dots per inch for the saved figure
"""
n_cond = len(cond_domains)
n_target = len(target_domains)
n_samples = len(dec_dicts)
ncols = n_samples + 1 if n_cond > 0 else n_samples
nrows = max(n_cond, n_target)
fig, ax = plt.subplots(nrows=nrows, ncols=ncols, figsize=(ncols*figscale, nrows*figscale), facecolor='white')
if nrows == 1 and ncols == 1:
ax = np.array([[ax]])
elif nrows == 1:
ax = np.expand_dims(ax, axis=0)
elif ncols == 1:
ax = np.expand_dims(ax, axis=1)
for cond_idx, cond_domain in enumerate(cond_domains):
axi = ax[cond_idx, 0]
plot_modality(dec_dicts[0], key=cond_domain, ax=axi)
axi.set_title(f'Conditioning: {MOD_PRINT_NAMES[cond_domain]}', fontsize=fs_titles)
# Remove spines that are not needed
if n_cond > 0:
for i in range(n_cond, nrows, 1):
remove_spines(ax[i, 0])
offset = 0 if n_cond == 0 else 1
for sample_idx, dec_dict in enumerate(dec_dicts):
for target_idx, target_domain in enumerate(target_domains):
axi = ax[target_idx, sample_idx+offset]
plot_modality(dec_dict, key=target_domain, ax=axi)
axi.set_title(f'{sample_idx+1}.{target_idx+1}: {MOD_PRINT_NAMES[target_domain]}', fontsize=fs_titles)
# Remove spines that are not needed
for i in range(n_target, nrows, 1):
remove_spines(ax[i, sample_idx+offset])
for ax in fig.axes:
remove_ticks_and_labels(ax)
plt.tight_layout()
if save_path is not None:
os.makedirs(os.path.dirname(save_path), exist_ok=True)
plt.savefig(save_path, bbox_inches='tight', dpi=dpi) #, pil_kwargs={'quality': 30})
plt.close()
else:
plt.show()
def save_conds_and_targets(cond_domains, target_domains, dec_dicts, save_dir, sample_idx, suffix=None, vis_det=False):
"""
Saves the conditioning and target modalities for a batch of samples.
Args:
cond_domains (list of str): List of conditioning domains
target_domains (list of str): List of target domains
dec_dicts (list of dicts): List of dictionaries containing the decoded conditioning and target modalities
save_dir (str): Path to save the modalities
sample_idx (int): Unique index of the dataset sample
suffix (str): Suffix to append to the saved file names
vis_det (bool): Whether to visualize detection
"""
for variant_idx, dec_dict in enumerate(dec_dicts):
for domain in cond_domains + target_domains:
if variant_idx != 0 and domain in cond_domains:
continue
variant_suffix = f'_{variant_idx}' if domain in target_domains else ''
if suffix is not None:
variant_suffix += f'_{suffix}'
domain_save_dir = os.path.join(save_dir, 'conds' if domain in cond_domains else 'targets', domain)
os.makedirs(domain_save_dir, exist_ok=True)
if 'tok' in domain or domain in ['rgb', 'human_poses', 'color_palette']:
img = Image.fromarray((255 * dec_dict[domain]).astype(np.uint8))
if domain in ['tok_clip', 'tok_dinov2', 'tok_imagebind']:
img = img.resize((224,224), resample=Image.NEAREST)
save_path = os.path.join(domain_save_dir, f'{sample_idx:06d}{variant_suffix}.png')
img.save(save_path)
elif domain in ['caption', 'det', 'metadata']:
if vis_det:
save_path = os.path.join(domain_save_dir, f'{sample_idx:06d}{variant_suffix}.png')
bbox_img = visualize_bboxes(np.ones((512,512,3)), dec_dict[domain], thickness=2)
bbox_img = Image.fromarray((255 * bbox_img.clip(0,1)).astype(np.uint8))
bbox_img.save(save_path)
else:
# Save caption as text file
save_path = os.path.join(domain_save_dir, f'{sample_idx:06d}{variant_suffix}.txt')
with open(save_path, 'w') as f:
f.write(dec_dict[domain])
def plot_images_with_captions(images, captions, save_path=None, dpi=100, wrap_length=40, figscale=4.0):
"""
Plots images with their corresponding captions.
Parameters:
- images (torch.Tensor): A tensor of shape Bx3xHxW with images.
- captions (list): A list of B captions.
"""
assert len(images) == len(captions), "Number of images must match number of captions!"
B = len(images)
sqrt_B = int(B**0.5)
# Determine the number of rows and columns for subplots
nrows = sqrt_B
ncols = (B + nrows - 1) // nrows
fig, axarr = plt.subplots(nrows=nrows, ncols=ncols, figsize=(figscale*ncols, figscale*nrows))
axarr = np.array([axarr]) if nrows == 1 and ncols == 1 else axarr.ravel()
for i, ax in enumerate(axarr):
if i < B:
# Convert tensor image to numpy
image_np = images[i].permute(1, 2, 0).cpu().float().numpy()
ax.imshow(image_np)
# Place caption below the image
caption_wrapped = textwrap.fill(captions[i], width=wrap_length)
ax.text(0.5, -0.1, caption_wrapped, ha='center', va='top', transform=ax.transAxes, wrap=True)
ax.axis("off")
else:
ax.axis("off") # Hide any additional subplots
plt.subplots_adjust(hspace=0.6)
plt.tight_layout()
if save_path is not None:
os.makedirs(os.path.dirname(save_path), exist_ok=True)
plt.savefig(save_path, bbox_inches='tight', dpi=dpi)
plt.close()
else:
plt.show()