Spaces:
Runtime error
Runtime error
# Copyright 2024 EPFL and Apple Inc. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
# -------------------------------------------------------- | |
# Based on UniLM / BEiT code base | |
# https://github.com/microsoft/unilm/tree/master/beit | |
# -------------------------------------------------------- | |
import re | |
import torch | |
def interpolate_pos_embed_vit(model, checkpoint_model): | |
if 'pos_embed' in checkpoint_model: | |
pos_embed_checkpoint = checkpoint_model['pos_embed'] | |
embedding_size = pos_embed_checkpoint.shape[-1] | |
num_patches = model.patch_embed.num_patches | |
num_extra_tokens = model.pos_embed.shape[-2] - num_patches | |
# height (== width) for the checkpoint position embedding | |
orig_size = int((pos_embed_checkpoint.shape[-2] - num_extra_tokens) ** 0.5) | |
# height (== width) for the new position embedding | |
new_size = int(num_patches ** 0.5) | |
# class_token and dist_token are kept unchanged | |
if orig_size != new_size: | |
print("Position interpolate from %dx%d to %dx%d" % (orig_size, orig_size, new_size, new_size)) | |
extra_tokens = pos_embed_checkpoint[:, :num_extra_tokens] | |
# only the position tokens are interpolated | |
pos_tokens = pos_embed_checkpoint[:, num_extra_tokens:] | |
pos_tokens = pos_tokens.reshape(-1, orig_size, orig_size, embedding_size).permute(0, 3, 1, 2) | |
pos_tokens = torch.nn.functional.interpolate( | |
pos_tokens, size=(new_size, new_size), mode='bicubic', align_corners=False) | |
pos_tokens = pos_tokens.permute(0, 2, 3, 1).flatten(1, 2) | |
new_pos_embed = torch.cat((extra_tokens, pos_tokens), dim=1) | |
checkpoint_model['pos_embed'] = new_pos_embed | |
def interpolate_pos_embed_multimae(model, checkpoint_model): | |
pattern = "input_adapters\.(.*)\.pos_emb" | |
matched_keys = [k for k in checkpoint_model if bool(re.match(pattern, k))] | |
for key in matched_keys: | |
domain = re.match(pattern, key).group(1) # group(0) is entire matched regex | |
if getattr(model.input_adapters, domain, None) is not None: | |
pos_embed_checkpoint = checkpoint_model[key] | |
_, _, orig_H, orig_W = pos_embed_checkpoint.shape | |
_, _, new_H, new_W = getattr(model.input_adapters, domain).pos_emb.shape | |
if (orig_H != new_H) or (orig_W != new_W): | |
print(f"Key {key}: Position interpolate from {orig_H}x{orig_W} to {new_H}x{new_W}") | |
pos_embed_checkpoint = torch.nn.functional.interpolate( | |
pos_embed_checkpoint, size=(new_H, new_W), mode='bicubic', align_corners=False) | |
checkpoint_model[key] = pos_embed_checkpoint | |
def interpolate_rgb_pos_emb_fm(model, checkpoint_model): | |
if 'encoder_embeddings.rgb.pos_emb' in checkpoint_model: | |
pos_embed_checkpoint = checkpoint_model['encoder_embeddings.rgb.pos_emb'] | |
embedding_size = pos_embed_checkpoint.shape[-1] | |
num_patches = model.encoder_embeddings.rgb.num_patches | |
num_extra_tokens = 0 | |
# height (== width) for the checkpoint position embedding | |
orig_size = int((pos_embed_checkpoint.shape[-2] - num_extra_tokens) ** 0.5) | |
# height (== width) for the new position embedding | |
new_size = int(num_patches ** 0.5) | |
# class_token and dist_token are kept unchanged | |
if orig_size != new_size: | |
print("Position interpolate from %dx%d to %dx%d" % (orig_size, orig_size, new_size, new_size)) | |
extra_tokens = pos_embed_checkpoint[:, :num_extra_tokens] | |
# only the position tokens are interpolated | |
pos_tokens = pos_embed_checkpoint[:, num_extra_tokens:] | |
pos_tokens = pos_tokens.reshape(-1, orig_size, orig_size, embedding_size).permute(0, 3, 1, 2) | |
pos_tokens = torch.nn.functional.interpolate( | |
pos_tokens, size=(new_size, new_size), mode='bicubic', align_corners=False) | |
pos_tokens = pos_tokens.permute(0, 2, 3, 1).flatten(1, 2) | |
new_pos_embed = torch.cat((extra_tokens, pos_tokens), dim=1) | |
checkpoint_model['encoder_embeddings.rgb.pos_emb'] = new_pos_embed | |