Spaces:
Runtime error
Runtime error
# -------------------------------------------------------- | |
# Based on the timm code base | |
# https://github.com/huggingface/pytorch-image-models | |
# -------------------------------------------------------- | |
""" Model / state_dict utils | |
Hacked together by / Copyright 2020 Ross Wightman | |
""" | |
import fnmatch | |
import torch | |
from torchvision.ops.misc import FrozenBatchNorm2d | |
from .model_ema import ModelEma | |
def unwrap_model(model): | |
if isinstance(model, ModelEma): | |
return unwrap_model(model.ema) | |
else: | |
return model.module if hasattr(model, 'module') else model | |
def get_state_dict(model, unwrap_fn=unwrap_model): | |
return unwrap_fn(model).state_dict() | |
def avg_sq_ch_mean(model, input, output): | |
""" calculate average channel square mean of output activations | |
""" | |
return torch.mean(output.mean(axis=[0, 2, 3]) ** 2).item() | |
def avg_ch_var(model, input, output): | |
""" calculate average channel variance of output activations | |
""" | |
return torch.mean(output.var(axis=[0, 2, 3])).item() | |
def avg_ch_var_residual(model, input, output): | |
""" calculate average channel variance of output activations | |
""" | |
return torch.mean(output.var(axis=[0, 2, 3])).item() | |
class ActivationStatsHook: | |
"""Iterates through each of `model`'s modules and matches modules using unix pattern | |
matching based on `hook_fn_locs` and registers `hook_fn` to the module if there is | |
a match. | |
Arguments: | |
model (nn.Module): model from which we will extract the activation stats | |
hook_fn_locs (List[str]): List of `hook_fn` locations based on Unix type string | |
matching with the name of model's modules. | |
hook_fns (List[Callable]): List of hook functions to be registered at every | |
module in `layer_names`. | |
Inspiration from https://docs.fast.ai/callback.hook.html. | |
Refer to https://gist.github.com/amaarora/6e56942fcb46e67ba203f3009b30d950 for an example | |
on how to plot Signal Propogation Plots using `ActivationStatsHook`. | |
""" | |
def __init__(self, model, hook_fn_locs, hook_fns): | |
self.model = model | |
self.hook_fn_locs = hook_fn_locs | |
self.hook_fns = hook_fns | |
if len(hook_fn_locs) != len(hook_fns): | |
raise ValueError("Please provide `hook_fns` for each `hook_fn_locs`, \ | |
their lengths are different.") | |
self.stats = dict((hook_fn.__name__, []) for hook_fn in hook_fns) | |
for hook_fn_loc, hook_fn in zip(hook_fn_locs, hook_fns): | |
self.register_hook(hook_fn_loc, hook_fn) | |
def _create_hook(self, hook_fn): | |
def append_activation_stats(module, input, output): | |
out = hook_fn(module, input, output) | |
self.stats[hook_fn.__name__].append(out) | |
return append_activation_stats | |
def register_hook(self, hook_fn_loc, hook_fn): | |
for name, module in self.model.named_modules(): | |
if not fnmatch.fnmatch(name, hook_fn_loc): | |
continue | |
module.register_forward_hook(self._create_hook(hook_fn)) | |
def extract_spp_stats( | |
model, | |
hook_fn_locs, | |
hook_fns, | |
input_shape=[8, 3, 224, 224]): | |
"""Extract average square channel mean and variance of activations during | |
forward pass to plot Signal Propogation Plots (SPP). | |
Paper: https://arxiv.org/abs/2101.08692 | |
Example Usage: https://gist.github.com/amaarora/6e56942fcb46e67ba203f3009b30d950 | |
""" | |
x = torch.normal(0., 1., input_shape) | |
hook = ActivationStatsHook(model, hook_fn_locs=hook_fn_locs, hook_fns=hook_fns) | |
_ = model(x) | |
return hook.stats | |
def freeze_batch_norm_2d(module): | |
""" | |
Converts all `BatchNorm2d` and `SyncBatchNorm` layers of provided module into `FrozenBatchNorm2d`. If `module` is | |
itself an instance of either `BatchNorm2d` or `SyncBatchNorm`, it is converted into `FrozenBatchNorm2d` and | |
returned. Otherwise, the module is walked recursively and submodules are converted in place. | |
Args: | |
module (torch.nn.Module): Any PyTorch module. | |
Returns: | |
torch.nn.Module: Resulting module | |
Inspired by https://github.com/pytorch/pytorch/blob/a5895f85be0f10212791145bfedc0261d364f103/torch/nn/modules/batchnorm.py#L762 | |
""" | |
res = module | |
if isinstance(module, (torch.nn.modules.batchnorm.BatchNorm2d, torch.nn.modules.batchnorm.SyncBatchNorm)): | |
res = FrozenBatchNorm2d(module.num_features) | |
res.num_features = module.num_features | |
res.affine = module.affine | |
if module.affine: | |
res.weight.data = module.weight.data.clone().detach() | |
res.bias.data = module.bias.data.clone().detach() | |
res.running_mean.data = module.running_mean.data | |
res.running_var.data = module.running_var.data | |
res.eps = module.eps | |
else: | |
for name, child in module.named_children(): | |
new_child = freeze_batch_norm_2d(child) | |
if new_child is not child: | |
res.add_module(name, new_child) | |
return res | |
def unfreeze_batch_norm_2d(module): | |
""" | |
Converts all `FrozenBatchNorm2d` layers of provided module into `BatchNorm2d`. If `module` is itself and instance | |
of `FrozenBatchNorm2d`, it is converted into `BatchNorm2d` and returned. Otherwise, the module is walked | |
recursively and submodules are converted in place. | |
Args: | |
module (torch.nn.Module): Any PyTorch module. | |
Returns: | |
torch.nn.Module: Resulting module | |
Inspired by https://github.com/pytorch/pytorch/blob/a5895f85be0f10212791145bfedc0261d364f103/torch/nn/modules/batchnorm.py#L762 | |
""" | |
res = module | |
if isinstance(module, FrozenBatchNorm2d): | |
res = torch.nn.BatchNorm2d(module.num_features) | |
if module.affine: | |
res.weight.data = module.weight.data.clone().detach() | |
res.bias.data = module.bias.data.clone().detach() | |
res.running_mean.data = module.running_mean.data | |
res.running_var.data = module.running_var.data | |
res.eps = module.eps | |
else: | |
for name, child in module.named_children(): | |
new_child = unfreeze_batch_norm_2d(child) | |
if new_child is not child: | |
res.add_module(name, new_child) | |
return res | |
def _freeze_unfreeze(root_module, submodules=[], include_bn_running_stats=True, mode='freeze'): | |
""" | |
Freeze or unfreeze parameters of the specified modules and those of all their hierarchical descendants. This is | |
done in place. | |
Args: | |
root_module (nn.Module, optional): Root module relative to which the `submodules` are referenced. | |
submodules (list[str]): List of modules for which the parameters will be (un)frozen. They are to be provided as | |
named modules relative to the root module (accessible via `root_module.named_modules()`). An empty list | |
means that the whole root module will be (un)frozen. Defaults to [] | |
include_bn_running_stats (bool): Whether to also (un)freeze the running statistics of batch norm 2d layers. | |
Defaults to `True`. | |
mode (bool): Whether to freeze ("freeze") or unfreeze ("unfreeze"). Defaults to `"freeze"`. | |
""" | |
assert mode in ["freeze", "unfreeze"], '`mode` must be one of "freeze" or "unfreeze"' | |
if isinstance(root_module, (torch.nn.modules.batchnorm.BatchNorm2d, torch.nn.modules.batchnorm.SyncBatchNorm)): | |
# Raise assertion here because we can't convert it in place | |
raise AssertionError( | |
"You have provided a batch norm layer as the `root module`. Please use " | |
"`timm.utils.model.freeze_batch_norm_2d` or `timm.utils.model.unfreeze_batch_norm_2d` instead.") | |
if isinstance(submodules, str): | |
submodules = [submodules] | |
named_modules = submodules | |
submodules = [root_module.get_submodule(m) for m in submodules] | |
if not len(submodules): | |
named_modules, submodules = list(zip(*root_module.named_children())) | |
for n, m in zip(named_modules, submodules): | |
# (Un)freeze parameters | |
for p in m.parameters(): | |
p.requires_grad = False if mode == 'freeze' else True | |
if include_bn_running_stats: | |
# Helper to add submodule specified as a named_module | |
def _add_submodule(module, name, submodule): | |
split = name.rsplit('.', 1) | |
if len(split) > 1: | |
module.get_submodule(split[0]).add_module(split[1], submodule) | |
else: | |
module.add_module(name, submodule) | |
# Freeze batch norm | |
if mode == 'freeze': | |
res = freeze_batch_norm_2d(m) | |
# It's possible that `m` is a type of BatchNorm in itself, in which case `unfreeze_batch_norm_2d` won't | |
# convert it in place, but will return the converted result. In this case `res` holds the converted | |
# result and we may try to re-assign the named module | |
if isinstance(m, (torch.nn.modules.batchnorm.BatchNorm2d, torch.nn.modules.batchnorm.SyncBatchNorm)): | |
_add_submodule(root_module, n, res) | |
# Unfreeze batch norm | |
else: | |
res = unfreeze_batch_norm_2d(m) | |
# Ditto. See note above in mode == 'freeze' branch | |
if isinstance(m, FrozenBatchNorm2d): | |
_add_submodule(root_module, n, res) | |
def freeze(root_module, submodules=[], include_bn_running_stats=True): | |
""" | |
Freeze parameters of the specified modules and those of all their hierarchical descendants. This is done in place. | |
Args: | |
root_module (nn.Module): Root module relative to which `submodules` are referenced. | |
submodules (list[str]): List of modules for which the parameters will be frozen. They are to be provided as | |
named modules relative to the root module (accessible via `root_module.named_modules()`). An empty list | |
means that the whole root module will be frozen. Defaults to `[]`. | |
include_bn_running_stats (bool): Whether to also freeze the running statistics of `BatchNorm2d` and | |
`SyncBatchNorm` layers. These will be converted to `FrozenBatchNorm2d` in place. Hint: During fine tuning, | |
it's good practice to freeze batch norm stats. And note that these are different to the affine parameters | |
which are just normal PyTorch parameters. Defaults to `True`. | |
Hint: If you want to freeze batch norm ONLY, use `timm.utils.model.freeze_batch_norm_2d`. | |
Examples:: | |
>>> model = timm.create_model('resnet18') | |
>>> # Freeze up to and including layer2 | |
>>> submodules = [n for n, _ in model.named_children()] | |
>>> print(submodules) | |
['conv1', 'bn1', 'act1', 'maxpool', 'layer1', 'layer2', 'layer3', 'layer4', 'global_pool', 'fc'] | |
>>> freeze(model, submodules[:submodules.index('layer2') + 1]) | |
>>> # Check for yourself that it works as expected | |
>>> print(model.layer2[0].conv1.weight.requires_grad) | |
False | |
>>> print(model.layer3[0].conv1.weight.requires_grad) | |
True | |
>>> # Unfreeze | |
>>> unfreeze(model) | |
""" | |
_freeze_unfreeze(root_module, submodules, include_bn_running_stats=include_bn_running_stats, mode="freeze") | |
def unfreeze(root_module, submodules=[], include_bn_running_stats=True): | |
""" | |
Unfreeze parameters of the specified modules and those of all their hierarchical descendants. This is done in place. | |
Args: | |
root_module (nn.Module): Root module relative to which `submodules` are referenced. | |
submodules (list[str]): List of submodules for which the parameters will be (un)frozen. They are to be provided | |
as named modules relative to the root module (accessible via `root_module.named_modules()`). An empty | |
list means that the whole root module will be unfrozen. Defaults to `[]`. | |
include_bn_running_stats (bool): Whether to also unfreeze the running statistics of `FrozenBatchNorm2d` layers. | |
These will be converted to `BatchNorm2d` in place. Defaults to `True`. | |
See example in docstring for `freeze`. | |
""" | |
_freeze_unfreeze(root_module, submodules, include_bn_running_stats=include_bn_running_stats, mode="unfreeze") | |