Spaces:
Runtime error
Runtime error
# Copyright 2024 EPFL and Apple Inc. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
import math | |
import warnings | |
from functools import partial | |
from typing import Optional | |
import torch | |
import torch.nn as nn | |
import torch.nn.functional as F | |
from torch.cuda.amp import autocast | |
from einops import rearrange | |
# xFormers imports | |
try: | |
from xformers.ops import memory_efficient_attention, unbind | |
XFORMERS_AVAILABLE = True | |
except ImportError: | |
print("xFormers not available") | |
XFORMERS_AVAILABLE = False | |
def pair(t): | |
return t if isinstance(t, tuple) else (t, t) | |
def build_2d_sincos_posemb(h, w, embed_dim=1024, temperature=10000.): | |
"""Sine-cosine positional embeddings as used in MoCo-v3 | |
""" | |
grid_w = torch.arange(w, dtype=torch.float32) | |
grid_h = torch.arange(h, dtype=torch.float32) | |
grid_w, grid_h = torch.meshgrid(grid_w, grid_h, indexing='ij') | |
assert embed_dim % 4 == 0, 'Embed dimension must be divisible by 4 for 2D sin-cos position embedding' | |
pos_dim = embed_dim // 4 | |
omega = torch.arange(pos_dim, dtype=torch.float32) / pos_dim | |
omega = 1. / (temperature ** omega) | |
out_w = torch.einsum('m,d->md', [grid_w.flatten(), omega]) | |
out_h = torch.einsum('m,d->md', [grid_h.flatten(), omega]) | |
pos_emb = torch.cat([torch.sin(out_w), torch.cos(out_w), torch.sin(out_h), torch.cos(out_h)], dim=1)[None, :, :] | |
pos_emb = rearrange(pos_emb, 'b (h w) d -> b d h w', h=h, w=w, d=embed_dim) | |
return pos_emb | |
def _no_grad_trunc_normal_(tensor, mean, std, a, b): | |
# Cut & paste from PyTorch official master until it's in a few official releases - RW | |
# Method based on https://people.sc.fsu.edu/~jburkardt/presentations/truncated_normal.pdf | |
def norm_cdf(x): | |
# Computes standard normal cumulative distribution function | |
return (1. + math.erf(x / math.sqrt(2.))) / 2. | |
if (mean < a - 2 * std) or (mean > b + 2 * std): | |
warnings.warn("mean is more than 2 std from [a, b] in nn.init.trunc_normal_. " | |
"The distribution of values may be incorrect.", | |
stacklevel=2) | |
with torch.no_grad(): | |
# Values are generated by using a truncated uniform distribution and | |
# then using the inverse CDF for the normal distribution. | |
# Get upper and lower cdf values | |
l = norm_cdf((a - mean) / std) | |
u = norm_cdf((b - mean) / std) | |
# Uniformly fill tensor with values from [l, u], then translate to | |
# [2l-1, 2u-1]. | |
tensor.uniform_(2 * l - 1, 2 * u - 1) | |
# Use inverse cdf transform for normal distribution to get truncated | |
# standard normal | |
tensor.erfinv_() | |
# Transform to proper mean, std | |
tensor.mul_(std * math.sqrt(2.)) | |
tensor.add_(mean) | |
# Clamp to ensure it's in the proper range | |
tensor.clamp_(min=a, max=b) | |
return tensor | |
def trunc_normal_(tensor, mean=0., std=1., a=-2., b=2.): | |
# type: (Tensor, float, float, float, float) -> Tensor | |
r"""Fills the input Tensor with values drawn from a truncated | |
normal distribution. The values are effectively drawn from the | |
normal distribution :math:`\mathcal{N}(\text{mean}, \text{std}^2)` | |
with values outside :math:`[a, b]` redrawn until they are within | |
the bounds. The method used for generating the random values works | |
best when :math:`a \leq \text{mean} \leq b`. | |
Args: | |
tensor: an n-dimensional `torch.Tensor` | |
mean: the mean of the normal distribution | |
std: the standard deviation of the normal distribution | |
a: the minimum cutoff value | |
b: the maximum cutoff value | |
Examples: | |
>>> w = torch.empty(3, 5) | |
>>> nn.init.trunc_normal_(w) | |
""" | |
return _no_grad_trunc_normal_(tensor, mean, std, a, b) | |
def drop_path(x, drop_prob: float = 0., training: bool = False): | |
"""Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks). | |
This is the same as the DropConnect impl I created for EfficientNet, etc networks, however, | |
the original name is misleading as 'Drop Connect' is a different form of dropout in a separate paper... | |
See discussion: https://github.com/tensorflow/tpu/issues/494#issuecomment-532968956 ... I've opted for | |
changing the layer and argument names to 'drop path' rather than mix DropConnect as a layer name and use | |
'survival rate' as the argument. | |
""" | |
if drop_prob == 0. or not training: | |
return x | |
keep_prob = 1 - drop_prob | |
shape = (x.shape[0],) + (1,) * (x.ndim - 1) # work with diff dim tensors, not just 2D ConvNets | |
random_tensor = keep_prob + torch.rand(shape, dtype=x.dtype, device=x.device) | |
random_tensor.floor_() # binarize | |
output = x.div(keep_prob) * random_tensor | |
return output | |
class DropPath(nn.Module): | |
"""Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks). | |
""" | |
def __init__(self, drop_prob=None): | |
super(DropPath, self).__init__() | |
self.drop_prob = drop_prob | |
def forward(self, x): | |
return drop_path(x, self.drop_prob, self.training) | |
def extra_repr(self) -> str: | |
return 'p={}'.format(self.drop_prob) | |
class Mlp(nn.Module): | |
def __init__(self, in_features, hidden_features=None, out_features=None, act_layer=nn.GELU, drop=0.): | |
super().__init__() | |
out_features = out_features or in_features | |
hidden_features = hidden_features or in_features | |
self.fc1 = nn.Linear(in_features, hidden_features) | |
self.act = act_layer() | |
self.fc2 = nn.Linear(hidden_features, out_features) | |
self.drop = nn.Dropout(drop) | |
def forward(self, x): | |
x = self.fc1(x) | |
x = self.act(x) | |
# x = self.drop(x) | |
# commit this for the orignal BERT implement | |
x = self.fc2(x) | |
x = self.drop(x) | |
return x | |
class Attention(nn.Module): | |
def __init__(self, dim, num_heads=8, qkv_bias=False, attn_drop=0., proj_drop=0.): | |
super().__init__() | |
self.num_heads = num_heads | |
head_dim = dim // num_heads | |
self.scale = head_dim ** -0.5 | |
self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias) | |
self.attn_drop = nn.Dropout(attn_drop) | |
self.proj = nn.Linear(dim, dim) | |
self.proj_drop = nn.Dropout(proj_drop) | |
def forward(self, x): | |
B, N, C = x.shape | |
qkv = self.qkv(x).reshape(B, N, 3, self.num_heads, C // self.num_heads) | |
if XFORMERS_AVAILABLE: | |
q, k, v = unbind(qkv, 2) # Each is of shape B x N x num_heads x C // num_heads | |
x = memory_efficient_attention(q, k, v) | |
x = x.reshape([B, N, C]) | |
else: | |
qkv = qkv.permute(2, 0, 3, 1, 4) | |
q, k, v = qkv.unbind(0) # make torchscript happy (cannot use tensor as tuple) | |
attn = (q @ k.transpose(-2, -1)) * self.scale | |
attn = attn.softmax(dim=-1) | |
attn = self.attn_drop(attn) | |
x = (attn @ v).transpose(1, 2).reshape(B, N, C) | |
x = self.proj(x) | |
x = self.proj_drop(x) | |
return x | |
class CrossAttention(nn.Module): | |
def __init__(self, dim, num_heads=8, qkv_bias=False, attn_drop=0., proj_drop=0.): | |
super().__init__() | |
self.num_heads = num_heads | |
head_dim = dim // num_heads | |
self.scale = head_dim ** -0.5 | |
self.q = nn.Linear(dim, dim, bias=qkv_bias) | |
self.kv = nn.Linear(dim, dim * 2, bias=qkv_bias) | |
self.attn_drop = nn.Dropout(attn_drop) | |
self.proj = nn.Linear(dim, dim) | |
self.proj_drop = nn.Dropout(proj_drop) | |
def forward(self, x, context): | |
B, N, C = x.shape | |
_, M, _ = context.shape | |
q = self.q(x).reshape(B, N, self.num_heads, C // self.num_heads).permute(0, 2, 1, 3) | |
kv = self.kv(context).reshape(B, M, 2, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4) | |
k, v = kv[0], kv[1] | |
attn = (q @ k.transpose(-2, -1)) * self.scale | |
attn = attn.softmax(dim=-1) | |
attn = self.attn_drop(attn) | |
x = (attn @ v).transpose(1, 2).reshape(B, N, -1) | |
x = self.proj(x) | |
x = self.proj_drop(x) | |
return x | |
class Block(nn.Module): | |
def __init__(self, dim, num_heads, mlp_ratio=4., qkv_bias=False, drop=0., attn_drop=0., | |
drop_path=0., act_layer=nn.GELU, norm_layer=nn.LayerNorm): | |
super().__init__() | |
self.norm1 = norm_layer(dim) | |
self.norm2 = norm_layer(dim) | |
self.attn = Attention(dim, num_heads=num_heads, qkv_bias=qkv_bias, attn_drop=attn_drop, proj_drop=drop) | |
self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity() | |
mlp_hidden_dim = int(dim * mlp_ratio) | |
self.mlp = Mlp(in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer, drop=drop) | |
def forward(self, x, **kwargs): | |
x = x + self.drop_path(self.attn(self.norm1(x))) | |
x = x + self.drop_path(self.mlp(self.norm2(x))) | |
return x | |
class DecoderBlock(nn.Module): | |
def __init__(self, dim, num_heads, mlp_ratio=4., qkv_bias=False, drop=0., attn_drop=0., | |
drop_path=0., act_layer=nn.GELU, norm_layer=nn.LayerNorm): | |
super().__init__() | |
self.norm1 = norm_layer(dim) | |
self.self_attn = Attention(dim, num_heads=num_heads, qkv_bias=qkv_bias, attn_drop=attn_drop, proj_drop=drop) | |
self.cross_attn = CrossAttention(dim, num_heads=num_heads, qkv_bias=qkv_bias, attn_drop=attn_drop, proj_drop=drop) | |
self.query_norm = norm_layer(dim) | |
self.context_norm = norm_layer(dim) | |
self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity() | |
self.norm2 = norm_layer(dim) | |
mlp_hidden_dim = int(dim * mlp_ratio) | |
self.mlp = Mlp(in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer, drop=drop) | |
def forward(self, x, context, **kwargs): | |
x = x + self.drop_path(self.self_attn(self.norm1(x))) | |
x = x + self.drop_path(self.cross_attn(self.query_norm(x), self.context_norm(context))) | |
x = x + self.drop_path(self.mlp(self.norm2(x))) | |
return x | |
class LayerNorm(nn.Module): | |
r""" LayerNorm that supports two data formats: channels_last (default) or channels_first. | |
The ordering of the dimensions in the inputs. channels_last corresponds to inputs with | |
shape (batch_size, height, width, channels) while channels_first corresponds to inputs | |
with shape (batch_size, channels, height, width). | |
From https://github.com/facebookresearch/ConvNeXt/blob/main/models/convnext.py | |
""" | |
def __init__(self, normalized_shape, eps=1e-6, data_format="channels_last"): | |
super().__init__() | |
self.weight = nn.Parameter(torch.ones(normalized_shape)) | |
self.bias = nn.Parameter(torch.zeros(normalized_shape)) | |
self.eps = eps | |
self.data_format = data_format | |
if self.data_format not in ["channels_last", "channels_first"]: | |
raise NotImplementedError | |
self.normalized_shape = (normalized_shape, ) | |
def forward(self, x): | |
if self.data_format == "channels_last": | |
return F.layer_norm(x, self.normalized_shape, self.weight, self.bias, self.eps) | |
elif self.data_format == "channels_first": | |
u = x.mean(1, keepdim=True) | |
s = (x - u).pow(2).mean(1, keepdim=True) | |
x = (x - u) / torch.sqrt(s + self.eps) | |
x = self.weight[:, None, None] * x + self.bias[:, None, None] | |
return x | |
class ConvNeXtBlock(nn.Module): | |
r""" ConvNeXt Block. There are two equivalent implementations: | |
(1) DwConv -> LayerNorm (channels_first) -> 1x1 Conv -> GELU -> 1x1 Conv; all in (N, C, H, W) | |
(2) DwConv -> Permute to (N, H, W, C); LayerNorm (channels_last) -> Linear -> GELU -> Linear; Permute back | |
We use (2) as we find it slightly faster in PyTorch. | |
From https://github.com/facebookresearch/ConvNeXt/blob/main/models/convnext.py | |
Args: | |
dim (int): Number of input channels. | |
drop_path (float): Stochastic depth rate. Default: 0.0 | |
layer_scale_init_value (float): Init value for Layer Scale. Default: 1e-6. | |
""" | |
def __init__(self, dim, drop_path=0., layer_scale_init_value=1e-6): | |
super().__init__() | |
self.dwconv = nn.Conv2d(dim, dim, kernel_size=7, padding=3, groups=dim) # depthwise conv | |
self.norm = nn.LayerNorm(dim, eps=1e-6) | |
self.pwconv1 = nn.Linear(dim, 4 * dim) # pointwise/1x1 convs, implemented with linear layers | |
self.act = nn.GELU() | |
self.pwconv2 = nn.Linear(4 * dim, dim) | |
self.gamma = nn.Parameter(layer_scale_init_value * torch.ones((dim)), | |
requires_grad=True) if layer_scale_init_value > 0 else None | |
self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity() | |
def forward(self, x): | |
input = x | |
x = self.dwconv(x) | |
x = x.permute(0, 2, 3, 1) # (N, C, H, W) -> (N, H, W, C) | |
x = self.norm(x) | |
x = self.pwconv1(x) | |
x = self.act(x) | |
x = self.pwconv2(x) | |
if self.gamma is not None: | |
x = self.gamma * x | |
x = x.permute(0, 3, 1, 2) # (N, H, W, C) -> (N, C, H, W) | |
x = input + self.drop_path(x) | |
return x | |
class ViTEncoder(nn.Module): | |
"""Transformer to map images / feature maps to latent features. | |
Args: | |
in_channels: Number of input channels. | |
patch_size: Patch size. | |
resolution: Image resolution. | |
dim_tokens: Transformer dimension. | |
depth: Number of transformer layers. | |
num_heads: Number of attention heads. | |
mlp_ratio: MLP ratio. | |
qkv_bias: If True, add bias to the qkv projection. | |
drop_rate: Dropout rate. | |
attn_drop_rate: Attention dropout rate. | |
drop_path_rate: Stochastic depth rate. | |
norm_layer: Normalization layer. | |
sincos_pos_emb: If True, use sine-cosine positional embedding. | |
learnable_pos_emb: If True, learn positional embedding. | |
patch_proj: If True, project image patches to tokens. | |
Consider disabling when encoding feature maps. | |
post_mlp: If True, add MLP after transformer. | |
See https://arxiv.org/abs/2110.04627. | |
ckpt_path: Path to checkpoint to load. | |
""" | |
def __init__(self, *, | |
in_channels: int = 3, | |
patch_size: int = 16, | |
resolution: int = 256, | |
dim_tokens: int = 768, | |
depth: int = 12, | |
num_heads: int = 12, | |
mlp_ratio: float = 4.0, | |
qkv_bias: bool = True, | |
drop_rate: float = 0.0, | |
attn_drop_rate: float = 0.0, | |
drop_path_rate: float = 0.0, | |
norm_layer: nn.Module = partial(nn.LayerNorm, eps=1e-6), | |
sincos_pos_emb: bool = True, | |
learnable_pos_emb: bool = False, | |
patch_proj: bool = True, | |
post_mlp: bool = False, | |
ckpt_path: Optional[str] = None, | |
**ignore_kwargs): | |
super().__init__() | |
self.in_channels = in_channels | |
self.P_H, self.P_W = pair(patch_size) | |
self.H, self.W = pair(resolution) | |
self.dim_tokens = dim_tokens | |
self.patch_proj = patch_proj | |
assert (self.H % self.P_H == 0) and (self.W % self.P_W == 0), f'Image sizes {self.H}x{self.W} must be divisible by patch sizes {self.P_H}x{self.P_W}' | |
N_H = self.H // self.P_H | |
N_W = self.W // self.P_W | |
if sincos_pos_emb: | |
self.pos_emb = build_2d_sincos_posemb(h=N_H, w=N_W, embed_dim=self.dim_tokens) | |
self.pos_emb = nn.Parameter(self.pos_emb, requires_grad=learnable_pos_emb) | |
else: | |
self.pos_emb = nn.Parameter(torch.zeros(1, self.dim_tokens, N_H, N_W)) | |
trunc_normal_(self.pos_emb, std=0.02) | |
# Image patches -> tokens projection | |
if patch_proj: | |
self.proj = nn.Conv2d( | |
in_channels=self.in_channels, out_channels=self.dim_tokens, | |
kernel_size=(self.P_H, self.P_W), stride=(self.P_H, self.P_W) | |
) | |
else: | |
self.proj = nn.Conv2d( | |
in_channels=self.in_channels, out_channels=self.dim_tokens, | |
kernel_size=1, stride=1 | |
) | |
# Transformer blocks | |
dpr = [x.item() for x in torch.linspace(0, drop_path_rate, depth)] # stochastic depth decay rule | |
self.blocks = nn.Sequential(*[ | |
Block(dim=dim_tokens, num_heads=num_heads, mlp_ratio=mlp_ratio, qkv_bias=qkv_bias, | |
drop=drop_rate, attn_drop=attn_drop_rate, drop_path=dpr[i], norm_layer=norm_layer) | |
for i in range(depth) | |
]) | |
if post_mlp: | |
self.norm_mlp = norm_layer(dim_tokens) | |
self.post_mlp = Mlp(dim_tokens, int(mlp_ratio*dim_tokens), act_layer=nn.Tanh) | |
self.apply(self._init_weights) | |
for name, m in self.named_modules(): | |
if isinstance(m, nn.Linear): | |
if 'qkv' in name: | |
# treat the weights of Q, K, V separately | |
val = math.sqrt(6. / float(m.weight.shape[0] // 3 + m.weight.shape[1])) | |
nn.init.uniform_(m.weight, -val, val) | |
elif 'kv' in name: | |
# treat the weights of K, V separately | |
val = math.sqrt(6. / float(m.weight.shape[0] // 2 + m.weight.shape[1])) | |
nn.init.uniform_(m.weight, -val, val) | |
if isinstance(m, nn.Conv2d): | |
if '.proj' in name: | |
# From MAE, initialize projection like nn.Linear (instead of nn.Conv2d) | |
w = m.weight.data | |
nn.init.xavier_uniform_(w.view([w.shape[0], -1])) | |
if ckpt_path is not None: | |
print(f'Loading checkpoint from {ckpt_path}') | |
ckpt = torch.load(ckpt_path) | |
ckpt['model']['pos_emb'] = rearrange(ckpt['model']['pos_embed'][:,1:], 'b (nh nw) d -> b d nh nw', nh=N_H, nw=N_W) | |
ckpt['model']['proj.weight'] = ckpt['model']['patch_embed.proj.weight'] | |
ckpt['model']['proj.bias'] = ckpt['model']['patch_embed.proj.bias'] | |
msg = self.load_state_dict(ckpt['model'], strict=False) | |
print(msg) | |
def _init_weights(self, m: nn.Module) -> None: | |
"""Weight initialization""" | |
if isinstance(m, nn.Linear): | |
nn.init.xavier_uniform_(m.weight) | |
if isinstance(m, nn.Linear) and m.bias is not None: | |
nn.init.constant_(m.bias, 0) | |
elif isinstance(m, nn.LayerNorm): | |
nn.init.constant_(m.bias, 0) | |
nn.init.constant_(m.weight, 1.0) | |
def get_num_layers(self) -> int: | |
"""Get number of transformer layers.""" | |
return len(self.blocks) | |
def forward(self, x: torch.Tensor) -> torch.Tensor: | |
"""ViT encoder forward pass. | |
Args: | |
x: Input tensor of shape [B, C, H, W] or | |
[B, C, N_H, N_W] (patch projection disabled). | |
Returns: | |
Output tensor of shape [B, dim_tokens, N_H, N_W]. | |
""" | |
# Create patches [B, C, H, W] -> [B, (H*W), C] | |
if self.patch_proj: | |
B, C, H, W = x.shape | |
assert (H % self.P_H == 0) and (W % self.P_W == 0), f'Image sizes {H}x{W} must be divisible by patch sizes {self.P_H}x{self.P_W}' | |
N_H, N_W = H // self.P_H, W // self.P_W # Number of patches in height and width | |
else: | |
B, C, N_H, N_W = x.shape | |
x = rearrange(self.proj(x), 'b d nh nw -> b (nh nw) d') | |
if self.pos_emb is not None: | |
# Create positional embedding | |
x_pos_emb = F.interpolate(self.pos_emb, size=(N_H, N_W), mode='bicubic', align_corners=False) | |
x_pos_emb = rearrange(x_pos_emb, 'b d nh nw -> b (nh nw) d') | |
# Add positional embeddings to patches | |
x = x + x_pos_emb | |
# Transformer forward pass | |
x = self.blocks(x) | |
if hasattr(self, 'post_mlp'): | |
with autocast(enabled = False): | |
x = x.float() + self.post_mlp(self.norm_mlp(x.float())) | |
# Reshape into 2D grid | |
x = rearrange(x, 'b (nh nw) d -> b d nh nw', nh=N_H, nw=N_W) | |
return x | |
class ViTDecoder(nn.Module): | |
"""Transformer to map latent features back to images / feature maps. | |
Args: | |
out_channels: Number of output channels. | |
patch_size: Patch size. | |
resolution: Image resolution. | |
dim_tokens: Transformer dimension. | |
depth: Number of transformer layers. | |
num_heads: Number of attention heads. | |
mlp_ratio: MLP ratio. | |
qkv_bias: If True, add bias to the qkv projection. | |
drop_rate: Dropout rate. | |
attn_drop_rate: Attention dropout rate. | |
drop_path_rate: Stochastic depth rate. | |
norm_layer: Normalization layer. | |
sincos_pos_emb: If True, use sine-cosine positional embedding. | |
learnable_pos_emb: If True, learn positional embedding. | |
patch_proj: If True, reproject tokens back to images. | |
Consider disabling when encoding feature maps. | |
post_mlp: If True, add MLP before transformer. | |
See https://arxiv.org/abs/2110.04627. | |
out_conv: If True, add two ConvNeXt blocks after transformer | |
to deal with patch checkerboard artifacts. | |
""" | |
def __init__(self, *, | |
out_channels: int = 3, | |
patch_size: int = 16, | |
resolution: int = 256, | |
dim_tokens: int = 768, | |
depth: int = 12, | |
num_heads: int = 12, | |
mlp_ratio: float = 4.0, | |
qkv_bias: bool = True, | |
drop_rate: float = 0.0, | |
attn_drop_rate: float = 0.0, | |
drop_path_rate: float = 0.0, | |
norm_layer: nn.Module = partial(nn.LayerNorm, eps=1e-6), | |
sincos_pos_emb: bool = True, | |
learnable_pos_emb: bool = False, | |
patch_proj: bool = True, | |
post_mlp: bool = False, | |
out_conv: bool = False, | |
**ignore_kwargs): | |
super().__init__() | |
self.out_channels = out_channels | |
self.P_H, self.P_W = pair(patch_size) | |
self.H, self.W = pair(resolution) | |
self.dim_tokens = dim_tokens | |
self.patch_proj = patch_proj | |
assert (self.H % self.P_H == 0) and (self.W % self.P_W == 0), f'Image sizes {self.H}x{self.W} must be divisible by patch sizes {self.P_H}x{self.P_W}' | |
N_H = self.H // self.P_H | |
N_W = self.W // self.P_W | |
if sincos_pos_emb: | |
self.pos_emb = build_2d_sincos_posemb(h=N_H, w=N_W, embed_dim=self.dim_tokens) | |
self.pos_emb = nn.Parameter(self.pos_emb, requires_grad=learnable_pos_emb) | |
else: | |
self.pos_emb = nn.Parameter(torch.zeros(1, self.dim_tokens, N_H, N_W)) | |
trunc_normal_(self.pos_emb, std=0.02) | |
# Transformer blocks | |
dpr = [x.item() for x in torch.linspace(0, drop_path_rate, depth)] # stochastic depth decay rule | |
self.blocks = nn.Sequential(*[ | |
Block(dim=dim_tokens, num_heads=num_heads, mlp_ratio=mlp_ratio, qkv_bias=qkv_bias, | |
drop=drop_rate, attn_drop=attn_drop_rate, drop_path=dpr[i], norm_layer=norm_layer) | |
for i in range(depth) | |
]) | |
# Tokens -> image output projection | |
if post_mlp: | |
self.norm_mlp = norm_layer(dim_tokens) | |
self.post_mlp = Mlp(dim_tokens, int(mlp_ratio*dim_tokens), act_layer=nn.Tanh) | |
if patch_proj: | |
self.out_proj = nn.Linear(dim_tokens, self.out_channels * self.P_H * self.P_W) | |
else: | |
self.out_proj = nn.Linear(dim_tokens, self.out_channels) | |
if out_conv: | |
self.out_conv = nn.Sequential(ConvNeXtBlock(dim=self.out_channels), ConvNeXtBlock(dim=self.out_channels)) | |
self.apply(self._init_weights) | |
for name, m in self.named_modules(): | |
if isinstance(m, nn.Linear): | |
if 'qkv' in name: | |
# treat the weights of Q, K, V separately | |
val = math.sqrt(6. / float(m.weight.shape[0] // 3 + m.weight.shape[1])) | |
nn.init.uniform_(m.weight, -val, val) | |
elif 'kv' in name: | |
# treat the weights of K, V separately | |
val = math.sqrt(6. / float(m.weight.shape[0] // 2 + m.weight.shape[1])) | |
nn.init.uniform_(m.weight, -val, val) | |
if isinstance(m, nn.Conv2d): | |
if '.proj' in name: | |
# From MAE, initialize projection like nn.Linear (instead of nn.Conv2d) | |
w = m.weight.data | |
nn.init.xavier_uniform_(w.view([w.shape[0], -1])) | |
def _init_weights(self, m: nn.Module) -> None: | |
"""Weight initialization""" | |
if isinstance(m, nn.Linear): | |
nn.init.xavier_uniform_(m.weight) | |
if isinstance(m, nn.Linear) and m.bias is not None: | |
nn.init.constant_(m.bias, 0) | |
elif isinstance(m, nn.LayerNorm): | |
nn.init.constant_(m.bias, 0) | |
nn.init.constant_(m.weight, 1.0) | |
def get_num_layers(self) -> int: | |
"""Get number of transformer layers.""" | |
return len(self.blocks) | |
def forward(self, x: torch.Tensor) -> torch.Tensor: | |
"""ViT decoder forward pass. | |
Args: | |
x: Input tensor of shape [B, dim_tokens, N_H, N_W]. | |
Returns: | |
Output tensor of shape [B, C, H, W] or | |
[B, C, N_H, N_W] (patch projection disabled). | |
""" | |
B, D, N_H, N_W = x.shape | |
# Reshape into 1D | |
x = rearrange(x, 'b d nh nw -> b (nh nw) d') | |
if self.pos_emb is not None: | |
# Create positional embedding | |
x_pos_emb = F.interpolate(self.pos_emb, size=(N_H, N_W), mode='bicubic', align_corners=False) | |
x_pos_emb = rearrange(x_pos_emb, 'b d nh nw -> b (nh nw) d') | |
# Add positional embeddings to patches | |
x = x + x_pos_emb | |
# Transformer forward pass | |
x = self.blocks(x) | |
# Project each token to (C * P_H * P_W) | |
if hasattr(self, 'post_mlp'): | |
x = x + self.post_mlp(self.norm_mlp(x)) | |
x = self.out_proj(x) | |
# Reshape sequence of patches into image or output features | |
ph, pw = (self.P_H, self.P_W) if self.patch_proj else (1, 1) | |
x = rearrange( | |
x, 'b (nh nw) (c ph pw) -> b c (nh ph) (nw pw)', | |
nh=N_H, nw=N_W, ph=ph, pw=pw, c=self.out_channels | |
) | |
# Optional conv layers to reduce patch artifacts | |
if hasattr(self, 'out_conv'): | |
x = self.out_conv(x) | |
return x | |
# Encoder presets | |
def vit_s_enc(in_channels, | |
patch_size, | |
resolution, | |
drop_rate=0.0, | |
attn_drop_rate=0.0, | |
drop_path_rate=0.0, | |
norm_layer=partial(nn.LayerNorm, eps=1e-6), | |
sincos_pos_emb=True, | |
learnable_pos_emb=False, | |
patch_proj=True, | |
post_mlp=False): | |
model = ViTEncoder( | |
in_channels=in_channels, | |
patch_size=patch_size, | |
resolution=resolution, | |
dim_tokens=512, | |
depth=8, | |
num_heads=8, | |
mlp_ratio=4, | |
qkv_bias=True, | |
drop_rate=drop_rate, | |
attn_drop_rate=attn_drop_rate, | |
drop_path_rate=drop_path_rate, | |
norm_layer=norm_layer, | |
sincos_pos_emb=sincos_pos_emb, | |
learnable_pos_emb=learnable_pos_emb, | |
patch_proj=patch_proj, | |
post_mlp=post_mlp, | |
) | |
return model | |
def vit_b_enc(in_channels, | |
patch_size, | |
resolution, | |
drop_rate=0.0, | |
attn_drop_rate=0.0, | |
drop_path_rate=0.0, | |
norm_layer=partial(nn.LayerNorm, eps=1e-6), | |
sincos_pos_emb=True, | |
learnable_pos_emb=False, | |
patch_proj=True, | |
post_mlp=False, | |
ckpt_path=None): | |
model = ViTEncoder( | |
in_channels=in_channels, | |
patch_size=patch_size, | |
resolution=resolution, | |
dim_tokens=768, | |
depth=12, | |
num_heads=12, | |
mlp_ratio=4, | |
qkv_bias=True, | |
drop_rate=drop_rate, | |
attn_drop_rate=attn_drop_rate, | |
drop_path_rate=drop_path_rate, | |
norm_layer=norm_layer, | |
sincos_pos_emb=sincos_pos_emb, | |
learnable_pos_emb=learnable_pos_emb, | |
patch_proj=patch_proj, | |
post_mlp=post_mlp, | |
ckpt_path=ckpt_path, | |
) | |
return model | |
def vit_l_enc(in_channels, | |
patch_size, | |
resolution, | |
drop_rate=0.0, | |
attn_drop_rate=0.0, | |
drop_path_rate=0.0, | |
norm_layer=partial(nn.LayerNorm, eps=1e-6), | |
sincos_pos_emb=True, | |
learnable_pos_emb=False, | |
patch_proj=True, | |
post_mlp=False): | |
model = ViTEncoder( | |
in_channels=in_channels, | |
patch_size=patch_size, | |
resolution=resolution, | |
dim_tokens=1024, | |
depth=24, | |
num_heads=16, | |
mlp_ratio=4, | |
qkv_bias=True, | |
drop_rate=drop_rate, | |
attn_drop_rate=attn_drop_rate, | |
drop_path_rate=drop_path_rate, | |
norm_layer=norm_layer, | |
sincos_pos_emb=sincos_pos_emb, | |
learnable_pos_emb=learnable_pos_emb, | |
patch_proj=patch_proj, | |
post_mlp=post_mlp, | |
) | |
return model | |
# Decoder presets | |
def vit_s_dec(out_channels, | |
patch_size, | |
resolution, | |
drop_rate=0.0, | |
attn_drop_rate=0.0, | |
drop_path_rate=0.0, | |
norm_layer=partial(nn.LayerNorm, eps=1e-6), | |
sincos_pos_emb=True, | |
learnable_pos_emb=False, | |
patch_proj=True, | |
post_mlp=False, | |
out_conv=False): | |
model = ViTDecoder( | |
out_channels=out_channels, | |
patch_size=patch_size, | |
resolution=resolution, | |
dim_tokens=512, | |
depth=8, | |
num_heads=8, | |
mlp_ratio=4, | |
qkv_bias=True, | |
drop_rate=drop_rate, | |
attn_drop_rate=attn_drop_rate, | |
drop_path_rate=drop_path_rate, | |
norm_layer=norm_layer, | |
sincos_pos_emb=sincos_pos_emb, | |
learnable_pos_emb=learnable_pos_emb, | |
patch_proj=patch_proj, | |
post_mlp=post_mlp, | |
out_conv=out_conv, | |
) | |
return model | |
def vit_b_dec(out_channels, | |
patch_size, | |
resolution, | |
drop_rate=0.0, | |
attn_drop_rate=0.0, | |
drop_path_rate=0.0, | |
norm_layer=partial(nn.LayerNorm, eps=1e-6), | |
sincos_pos_emb=True, | |
learnable_pos_emb=False, | |
patch_proj=True, | |
post_mlp=False, | |
out_conv=False): | |
model = ViTDecoder( | |
out_channels=out_channels, | |
patch_size=patch_size, | |
resolution=resolution, | |
dim_tokens=768, | |
depth=12, | |
num_heads=12, | |
mlp_ratio=4, | |
qkv_bias=True, | |
drop_rate=drop_rate, | |
attn_drop_rate=attn_drop_rate, | |
drop_path_rate=drop_path_rate, | |
norm_layer=norm_layer, | |
sincos_pos_emb=sincos_pos_emb, | |
learnable_pos_emb=learnable_pos_emb, | |
patch_proj=patch_proj, | |
post_mlp=post_mlp, | |
out_conv=out_conv, | |
) | |
return model | |
def vit_l_dec(out_channels, | |
patch_size, | |
resolution, | |
drop_rate=0.0, | |
attn_drop_rate=0.0, | |
drop_path_rate=0.0, | |
norm_layer=partial(nn.LayerNorm, eps=1e-6), | |
sincos_pos_emb=True, | |
learnable_pos_emb=False, | |
patch_proj=True, | |
post_mlp=False, | |
out_conv=False): | |
model = ViTDecoder( | |
out_channels=out_channels, | |
patch_size=patch_size, | |
resolution=resolution, | |
dim_tokens=1024, | |
depth=24, | |
num_heads=16, | |
mlp_ratio=4, | |
qkv_bias=True, | |
drop_rate=drop_rate, | |
attn_drop_rate=attn_drop_rate, | |
drop_path_rate=drop_path_rate, | |
norm_layer=norm_layer, | |
sincos_pos_emb=sincos_pos_emb, | |
learnable_pos_emb=learnable_pos_emb, | |
patch_proj=patch_proj, | |
post_mlp=post_mlp, | |
out_conv=out_conv, | |
) | |
return model | |