aroraaman's picture
Add all of `fourm`
3424266
raw
history blame
33.1 kB
# Copyright 2024 EPFL and Apple Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import math
import warnings
from functools import partial
from typing import Optional
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.cuda.amp import autocast
from einops import rearrange
# xFormers imports
try:
from xformers.ops import memory_efficient_attention, unbind
XFORMERS_AVAILABLE = True
except ImportError:
print("xFormers not available")
XFORMERS_AVAILABLE = False
def pair(t):
return t if isinstance(t, tuple) else (t, t)
def build_2d_sincos_posemb(h, w, embed_dim=1024, temperature=10000.):
"""Sine-cosine positional embeddings as used in MoCo-v3
"""
grid_w = torch.arange(w, dtype=torch.float32)
grid_h = torch.arange(h, dtype=torch.float32)
grid_w, grid_h = torch.meshgrid(grid_w, grid_h, indexing='ij')
assert embed_dim % 4 == 0, 'Embed dimension must be divisible by 4 for 2D sin-cos position embedding'
pos_dim = embed_dim // 4
omega = torch.arange(pos_dim, dtype=torch.float32) / pos_dim
omega = 1. / (temperature ** omega)
out_w = torch.einsum('m,d->md', [grid_w.flatten(), omega])
out_h = torch.einsum('m,d->md', [grid_h.flatten(), omega])
pos_emb = torch.cat([torch.sin(out_w), torch.cos(out_w), torch.sin(out_h), torch.cos(out_h)], dim=1)[None, :, :]
pos_emb = rearrange(pos_emb, 'b (h w) d -> b d h w', h=h, w=w, d=embed_dim)
return pos_emb
def _no_grad_trunc_normal_(tensor, mean, std, a, b):
# Cut & paste from PyTorch official master until it's in a few official releases - RW
# Method based on https://people.sc.fsu.edu/~jburkardt/presentations/truncated_normal.pdf
def norm_cdf(x):
# Computes standard normal cumulative distribution function
return (1. + math.erf(x / math.sqrt(2.))) / 2.
if (mean < a - 2 * std) or (mean > b + 2 * std):
warnings.warn("mean is more than 2 std from [a, b] in nn.init.trunc_normal_. "
"The distribution of values may be incorrect.",
stacklevel=2)
with torch.no_grad():
# Values are generated by using a truncated uniform distribution and
# then using the inverse CDF for the normal distribution.
# Get upper and lower cdf values
l = norm_cdf((a - mean) / std)
u = norm_cdf((b - mean) / std)
# Uniformly fill tensor with values from [l, u], then translate to
# [2l-1, 2u-1].
tensor.uniform_(2 * l - 1, 2 * u - 1)
# Use inverse cdf transform for normal distribution to get truncated
# standard normal
tensor.erfinv_()
# Transform to proper mean, std
tensor.mul_(std * math.sqrt(2.))
tensor.add_(mean)
# Clamp to ensure it's in the proper range
tensor.clamp_(min=a, max=b)
return tensor
def trunc_normal_(tensor, mean=0., std=1., a=-2., b=2.):
# type: (Tensor, float, float, float, float) -> Tensor
r"""Fills the input Tensor with values drawn from a truncated
normal distribution. The values are effectively drawn from the
normal distribution :math:`\mathcal{N}(\text{mean}, \text{std}^2)`
with values outside :math:`[a, b]` redrawn until they are within
the bounds. The method used for generating the random values works
best when :math:`a \leq \text{mean} \leq b`.
Args:
tensor: an n-dimensional `torch.Tensor`
mean: the mean of the normal distribution
std: the standard deviation of the normal distribution
a: the minimum cutoff value
b: the maximum cutoff value
Examples:
>>> w = torch.empty(3, 5)
>>> nn.init.trunc_normal_(w)
"""
return _no_grad_trunc_normal_(tensor, mean, std, a, b)
def drop_path(x, drop_prob: float = 0., training: bool = False):
"""Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks).
This is the same as the DropConnect impl I created for EfficientNet, etc networks, however,
the original name is misleading as 'Drop Connect' is a different form of dropout in a separate paper...
See discussion: https://github.com/tensorflow/tpu/issues/494#issuecomment-532968956 ... I've opted for
changing the layer and argument names to 'drop path' rather than mix DropConnect as a layer name and use
'survival rate' as the argument.
"""
if drop_prob == 0. or not training:
return x
keep_prob = 1 - drop_prob
shape = (x.shape[0],) + (1,) * (x.ndim - 1) # work with diff dim tensors, not just 2D ConvNets
random_tensor = keep_prob + torch.rand(shape, dtype=x.dtype, device=x.device)
random_tensor.floor_() # binarize
output = x.div(keep_prob) * random_tensor
return output
class DropPath(nn.Module):
"""Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks).
"""
def __init__(self, drop_prob=None):
super(DropPath, self).__init__()
self.drop_prob = drop_prob
def forward(self, x):
return drop_path(x, self.drop_prob, self.training)
def extra_repr(self) -> str:
return 'p={}'.format(self.drop_prob)
class Mlp(nn.Module):
def __init__(self, in_features, hidden_features=None, out_features=None, act_layer=nn.GELU, drop=0.):
super().__init__()
out_features = out_features or in_features
hidden_features = hidden_features or in_features
self.fc1 = nn.Linear(in_features, hidden_features)
self.act = act_layer()
self.fc2 = nn.Linear(hidden_features, out_features)
self.drop = nn.Dropout(drop)
def forward(self, x):
x = self.fc1(x)
x = self.act(x)
# x = self.drop(x)
# commit this for the orignal BERT implement
x = self.fc2(x)
x = self.drop(x)
return x
class Attention(nn.Module):
def __init__(self, dim, num_heads=8, qkv_bias=False, attn_drop=0., proj_drop=0.):
super().__init__()
self.num_heads = num_heads
head_dim = dim // num_heads
self.scale = head_dim ** -0.5
self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias)
self.attn_drop = nn.Dropout(attn_drop)
self.proj = nn.Linear(dim, dim)
self.proj_drop = nn.Dropout(proj_drop)
def forward(self, x):
B, N, C = x.shape
qkv = self.qkv(x).reshape(B, N, 3, self.num_heads, C // self.num_heads)
if XFORMERS_AVAILABLE:
q, k, v = unbind(qkv, 2) # Each is of shape B x N x num_heads x C // num_heads
x = memory_efficient_attention(q, k, v)
x = x.reshape([B, N, C])
else:
qkv = qkv.permute(2, 0, 3, 1, 4)
q, k, v = qkv.unbind(0) # make torchscript happy (cannot use tensor as tuple)
attn = (q @ k.transpose(-2, -1)) * self.scale
attn = attn.softmax(dim=-1)
attn = self.attn_drop(attn)
x = (attn @ v).transpose(1, 2).reshape(B, N, C)
x = self.proj(x)
x = self.proj_drop(x)
return x
class CrossAttention(nn.Module):
def __init__(self, dim, num_heads=8, qkv_bias=False, attn_drop=0., proj_drop=0.):
super().__init__()
self.num_heads = num_heads
head_dim = dim // num_heads
self.scale = head_dim ** -0.5
self.q = nn.Linear(dim, dim, bias=qkv_bias)
self.kv = nn.Linear(dim, dim * 2, bias=qkv_bias)
self.attn_drop = nn.Dropout(attn_drop)
self.proj = nn.Linear(dim, dim)
self.proj_drop = nn.Dropout(proj_drop)
def forward(self, x, context):
B, N, C = x.shape
_, M, _ = context.shape
q = self.q(x).reshape(B, N, self.num_heads, C // self.num_heads).permute(0, 2, 1, 3)
kv = self.kv(context).reshape(B, M, 2, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4)
k, v = kv[0], kv[1]
attn = (q @ k.transpose(-2, -1)) * self.scale
attn = attn.softmax(dim=-1)
attn = self.attn_drop(attn)
x = (attn @ v).transpose(1, 2).reshape(B, N, -1)
x = self.proj(x)
x = self.proj_drop(x)
return x
class Block(nn.Module):
def __init__(self, dim, num_heads, mlp_ratio=4., qkv_bias=False, drop=0., attn_drop=0.,
drop_path=0., act_layer=nn.GELU, norm_layer=nn.LayerNorm):
super().__init__()
self.norm1 = norm_layer(dim)
self.norm2 = norm_layer(dim)
self.attn = Attention(dim, num_heads=num_heads, qkv_bias=qkv_bias, attn_drop=attn_drop, proj_drop=drop)
self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity()
mlp_hidden_dim = int(dim * mlp_ratio)
self.mlp = Mlp(in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer, drop=drop)
def forward(self, x, **kwargs):
x = x + self.drop_path(self.attn(self.norm1(x)))
x = x + self.drop_path(self.mlp(self.norm2(x)))
return x
class DecoderBlock(nn.Module):
def __init__(self, dim, num_heads, mlp_ratio=4., qkv_bias=False, drop=0., attn_drop=0.,
drop_path=0., act_layer=nn.GELU, norm_layer=nn.LayerNorm):
super().__init__()
self.norm1 = norm_layer(dim)
self.self_attn = Attention(dim, num_heads=num_heads, qkv_bias=qkv_bias, attn_drop=attn_drop, proj_drop=drop)
self.cross_attn = CrossAttention(dim, num_heads=num_heads, qkv_bias=qkv_bias, attn_drop=attn_drop, proj_drop=drop)
self.query_norm = norm_layer(dim)
self.context_norm = norm_layer(dim)
self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity()
self.norm2 = norm_layer(dim)
mlp_hidden_dim = int(dim * mlp_ratio)
self.mlp = Mlp(in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer, drop=drop)
def forward(self, x, context, **kwargs):
x = x + self.drop_path(self.self_attn(self.norm1(x)))
x = x + self.drop_path(self.cross_attn(self.query_norm(x), self.context_norm(context)))
x = x + self.drop_path(self.mlp(self.norm2(x)))
return x
class LayerNorm(nn.Module):
r""" LayerNorm that supports two data formats: channels_last (default) or channels_first.
The ordering of the dimensions in the inputs. channels_last corresponds to inputs with
shape (batch_size, height, width, channels) while channels_first corresponds to inputs
with shape (batch_size, channels, height, width).
From https://github.com/facebookresearch/ConvNeXt/blob/main/models/convnext.py
"""
def __init__(self, normalized_shape, eps=1e-6, data_format="channels_last"):
super().__init__()
self.weight = nn.Parameter(torch.ones(normalized_shape))
self.bias = nn.Parameter(torch.zeros(normalized_shape))
self.eps = eps
self.data_format = data_format
if self.data_format not in ["channels_last", "channels_first"]:
raise NotImplementedError
self.normalized_shape = (normalized_shape, )
def forward(self, x):
if self.data_format == "channels_last":
return F.layer_norm(x, self.normalized_shape, self.weight, self.bias, self.eps)
elif self.data_format == "channels_first":
u = x.mean(1, keepdim=True)
s = (x - u).pow(2).mean(1, keepdim=True)
x = (x - u) / torch.sqrt(s + self.eps)
x = self.weight[:, None, None] * x + self.bias[:, None, None]
return x
class ConvNeXtBlock(nn.Module):
r""" ConvNeXt Block. There are two equivalent implementations:
(1) DwConv -> LayerNorm (channels_first) -> 1x1 Conv -> GELU -> 1x1 Conv; all in (N, C, H, W)
(2) DwConv -> Permute to (N, H, W, C); LayerNorm (channels_last) -> Linear -> GELU -> Linear; Permute back
We use (2) as we find it slightly faster in PyTorch.
From https://github.com/facebookresearch/ConvNeXt/blob/main/models/convnext.py
Args:
dim (int): Number of input channels.
drop_path (float): Stochastic depth rate. Default: 0.0
layer_scale_init_value (float): Init value for Layer Scale. Default: 1e-6.
"""
def __init__(self, dim, drop_path=0., layer_scale_init_value=1e-6):
super().__init__()
self.dwconv = nn.Conv2d(dim, dim, kernel_size=7, padding=3, groups=dim) # depthwise conv
self.norm = nn.LayerNorm(dim, eps=1e-6)
self.pwconv1 = nn.Linear(dim, 4 * dim) # pointwise/1x1 convs, implemented with linear layers
self.act = nn.GELU()
self.pwconv2 = nn.Linear(4 * dim, dim)
self.gamma = nn.Parameter(layer_scale_init_value * torch.ones((dim)),
requires_grad=True) if layer_scale_init_value > 0 else None
self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity()
def forward(self, x):
input = x
x = self.dwconv(x)
x = x.permute(0, 2, 3, 1) # (N, C, H, W) -> (N, H, W, C)
x = self.norm(x)
x = self.pwconv1(x)
x = self.act(x)
x = self.pwconv2(x)
if self.gamma is not None:
x = self.gamma * x
x = x.permute(0, 3, 1, 2) # (N, H, W, C) -> (N, C, H, W)
x = input + self.drop_path(x)
return x
class ViTEncoder(nn.Module):
"""Transformer to map images / feature maps to latent features.
Args:
in_channels: Number of input channels.
patch_size: Patch size.
resolution: Image resolution.
dim_tokens: Transformer dimension.
depth: Number of transformer layers.
num_heads: Number of attention heads.
mlp_ratio: MLP ratio.
qkv_bias: If True, add bias to the qkv projection.
drop_rate: Dropout rate.
attn_drop_rate: Attention dropout rate.
drop_path_rate: Stochastic depth rate.
norm_layer: Normalization layer.
sincos_pos_emb: If True, use sine-cosine positional embedding.
learnable_pos_emb: If True, learn positional embedding.
patch_proj: If True, project image patches to tokens.
Consider disabling when encoding feature maps.
post_mlp: If True, add MLP after transformer.
See https://arxiv.org/abs/2110.04627.
ckpt_path: Path to checkpoint to load.
"""
def __init__(self, *,
in_channels: int = 3,
patch_size: int = 16,
resolution: int = 256,
dim_tokens: int = 768,
depth: int = 12,
num_heads: int = 12,
mlp_ratio: float = 4.0,
qkv_bias: bool = True,
drop_rate: float = 0.0,
attn_drop_rate: float = 0.0,
drop_path_rate: float = 0.0,
norm_layer: nn.Module = partial(nn.LayerNorm, eps=1e-6),
sincos_pos_emb: bool = True,
learnable_pos_emb: bool = False,
patch_proj: bool = True,
post_mlp: bool = False,
ckpt_path: Optional[str] = None,
**ignore_kwargs):
super().__init__()
self.in_channels = in_channels
self.P_H, self.P_W = pair(patch_size)
self.H, self.W = pair(resolution)
self.dim_tokens = dim_tokens
self.patch_proj = patch_proj
assert (self.H % self.P_H == 0) and (self.W % self.P_W == 0), f'Image sizes {self.H}x{self.W} must be divisible by patch sizes {self.P_H}x{self.P_W}'
N_H = self.H // self.P_H
N_W = self.W // self.P_W
if sincos_pos_emb:
self.pos_emb = build_2d_sincos_posemb(h=N_H, w=N_W, embed_dim=self.dim_tokens)
self.pos_emb = nn.Parameter(self.pos_emb, requires_grad=learnable_pos_emb)
else:
self.pos_emb = nn.Parameter(torch.zeros(1, self.dim_tokens, N_H, N_W))
trunc_normal_(self.pos_emb, std=0.02)
# Image patches -> tokens projection
if patch_proj:
self.proj = nn.Conv2d(
in_channels=self.in_channels, out_channels=self.dim_tokens,
kernel_size=(self.P_H, self.P_W), stride=(self.P_H, self.P_W)
)
else:
self.proj = nn.Conv2d(
in_channels=self.in_channels, out_channels=self.dim_tokens,
kernel_size=1, stride=1
)
# Transformer blocks
dpr = [x.item() for x in torch.linspace(0, drop_path_rate, depth)] # stochastic depth decay rule
self.blocks = nn.Sequential(*[
Block(dim=dim_tokens, num_heads=num_heads, mlp_ratio=mlp_ratio, qkv_bias=qkv_bias,
drop=drop_rate, attn_drop=attn_drop_rate, drop_path=dpr[i], norm_layer=norm_layer)
for i in range(depth)
])
if post_mlp:
self.norm_mlp = norm_layer(dim_tokens)
self.post_mlp = Mlp(dim_tokens, int(mlp_ratio*dim_tokens), act_layer=nn.Tanh)
self.apply(self._init_weights)
for name, m in self.named_modules():
if isinstance(m, nn.Linear):
if 'qkv' in name:
# treat the weights of Q, K, V separately
val = math.sqrt(6. / float(m.weight.shape[0] // 3 + m.weight.shape[1]))
nn.init.uniform_(m.weight, -val, val)
elif 'kv' in name:
# treat the weights of K, V separately
val = math.sqrt(6. / float(m.weight.shape[0] // 2 + m.weight.shape[1]))
nn.init.uniform_(m.weight, -val, val)
if isinstance(m, nn.Conv2d):
if '.proj' in name:
# From MAE, initialize projection like nn.Linear (instead of nn.Conv2d)
w = m.weight.data
nn.init.xavier_uniform_(w.view([w.shape[0], -1]))
if ckpt_path is not None:
print(f'Loading checkpoint from {ckpt_path}')
ckpt = torch.load(ckpt_path)
ckpt['model']['pos_emb'] = rearrange(ckpt['model']['pos_embed'][:,1:], 'b (nh nw) d -> b d nh nw', nh=N_H, nw=N_W)
ckpt['model']['proj.weight'] = ckpt['model']['patch_embed.proj.weight']
ckpt['model']['proj.bias'] = ckpt['model']['patch_embed.proj.bias']
msg = self.load_state_dict(ckpt['model'], strict=False)
print(msg)
def _init_weights(self, m: nn.Module) -> None:
"""Weight initialization"""
if isinstance(m, nn.Linear):
nn.init.xavier_uniform_(m.weight)
if isinstance(m, nn.Linear) and m.bias is not None:
nn.init.constant_(m.bias, 0)
elif isinstance(m, nn.LayerNorm):
nn.init.constant_(m.bias, 0)
nn.init.constant_(m.weight, 1.0)
def get_num_layers(self) -> int:
"""Get number of transformer layers."""
return len(self.blocks)
def forward(self, x: torch.Tensor) -> torch.Tensor:
"""ViT encoder forward pass.
Args:
x: Input tensor of shape [B, C, H, W] or
[B, C, N_H, N_W] (patch projection disabled).
Returns:
Output tensor of shape [B, dim_tokens, N_H, N_W].
"""
# Create patches [B, C, H, W] -> [B, (H*W), C]
if self.patch_proj:
B, C, H, W = x.shape
assert (H % self.P_H == 0) and (W % self.P_W == 0), f'Image sizes {H}x{W} must be divisible by patch sizes {self.P_H}x{self.P_W}'
N_H, N_W = H // self.P_H, W // self.P_W # Number of patches in height and width
else:
B, C, N_H, N_W = x.shape
x = rearrange(self.proj(x), 'b d nh nw -> b (nh nw) d')
if self.pos_emb is not None:
# Create positional embedding
x_pos_emb = F.interpolate(self.pos_emb, size=(N_H, N_W), mode='bicubic', align_corners=False)
x_pos_emb = rearrange(x_pos_emb, 'b d nh nw -> b (nh nw) d')
# Add positional embeddings to patches
x = x + x_pos_emb
# Transformer forward pass
x = self.blocks(x)
if hasattr(self, 'post_mlp'):
with autocast(enabled = False):
x = x.float() + self.post_mlp(self.norm_mlp(x.float()))
# Reshape into 2D grid
x = rearrange(x, 'b (nh nw) d -> b d nh nw', nh=N_H, nw=N_W)
return x
class ViTDecoder(nn.Module):
"""Transformer to map latent features back to images / feature maps.
Args:
out_channels: Number of output channels.
patch_size: Patch size.
resolution: Image resolution.
dim_tokens: Transformer dimension.
depth: Number of transformer layers.
num_heads: Number of attention heads.
mlp_ratio: MLP ratio.
qkv_bias: If True, add bias to the qkv projection.
drop_rate: Dropout rate.
attn_drop_rate: Attention dropout rate.
drop_path_rate: Stochastic depth rate.
norm_layer: Normalization layer.
sincos_pos_emb: If True, use sine-cosine positional embedding.
learnable_pos_emb: If True, learn positional embedding.
patch_proj: If True, reproject tokens back to images.
Consider disabling when encoding feature maps.
post_mlp: If True, add MLP before transformer.
See https://arxiv.org/abs/2110.04627.
out_conv: If True, add two ConvNeXt blocks after transformer
to deal with patch checkerboard artifacts.
"""
def __init__(self, *,
out_channels: int = 3,
patch_size: int = 16,
resolution: int = 256,
dim_tokens: int = 768,
depth: int = 12,
num_heads: int = 12,
mlp_ratio: float = 4.0,
qkv_bias: bool = True,
drop_rate: float = 0.0,
attn_drop_rate: float = 0.0,
drop_path_rate: float = 0.0,
norm_layer: nn.Module = partial(nn.LayerNorm, eps=1e-6),
sincos_pos_emb: bool = True,
learnable_pos_emb: bool = False,
patch_proj: bool = True,
post_mlp: bool = False,
out_conv: bool = False,
**ignore_kwargs):
super().__init__()
self.out_channels = out_channels
self.P_H, self.P_W = pair(patch_size)
self.H, self.W = pair(resolution)
self.dim_tokens = dim_tokens
self.patch_proj = patch_proj
assert (self.H % self.P_H == 0) and (self.W % self.P_W == 0), f'Image sizes {self.H}x{self.W} must be divisible by patch sizes {self.P_H}x{self.P_W}'
N_H = self.H // self.P_H
N_W = self.W // self.P_W
if sincos_pos_emb:
self.pos_emb = build_2d_sincos_posemb(h=N_H, w=N_W, embed_dim=self.dim_tokens)
self.pos_emb = nn.Parameter(self.pos_emb, requires_grad=learnable_pos_emb)
else:
self.pos_emb = nn.Parameter(torch.zeros(1, self.dim_tokens, N_H, N_W))
trunc_normal_(self.pos_emb, std=0.02)
# Transformer blocks
dpr = [x.item() for x in torch.linspace(0, drop_path_rate, depth)] # stochastic depth decay rule
self.blocks = nn.Sequential(*[
Block(dim=dim_tokens, num_heads=num_heads, mlp_ratio=mlp_ratio, qkv_bias=qkv_bias,
drop=drop_rate, attn_drop=attn_drop_rate, drop_path=dpr[i], norm_layer=norm_layer)
for i in range(depth)
])
# Tokens -> image output projection
if post_mlp:
self.norm_mlp = norm_layer(dim_tokens)
self.post_mlp = Mlp(dim_tokens, int(mlp_ratio*dim_tokens), act_layer=nn.Tanh)
if patch_proj:
self.out_proj = nn.Linear(dim_tokens, self.out_channels * self.P_H * self.P_W)
else:
self.out_proj = nn.Linear(dim_tokens, self.out_channels)
if out_conv:
self.out_conv = nn.Sequential(ConvNeXtBlock(dim=self.out_channels), ConvNeXtBlock(dim=self.out_channels))
self.apply(self._init_weights)
for name, m in self.named_modules():
if isinstance(m, nn.Linear):
if 'qkv' in name:
# treat the weights of Q, K, V separately
val = math.sqrt(6. / float(m.weight.shape[0] // 3 + m.weight.shape[1]))
nn.init.uniform_(m.weight, -val, val)
elif 'kv' in name:
# treat the weights of K, V separately
val = math.sqrt(6. / float(m.weight.shape[0] // 2 + m.weight.shape[1]))
nn.init.uniform_(m.weight, -val, val)
if isinstance(m, nn.Conv2d):
if '.proj' in name:
# From MAE, initialize projection like nn.Linear (instead of nn.Conv2d)
w = m.weight.data
nn.init.xavier_uniform_(w.view([w.shape[0], -1]))
def _init_weights(self, m: nn.Module) -> None:
"""Weight initialization"""
if isinstance(m, nn.Linear):
nn.init.xavier_uniform_(m.weight)
if isinstance(m, nn.Linear) and m.bias is not None:
nn.init.constant_(m.bias, 0)
elif isinstance(m, nn.LayerNorm):
nn.init.constant_(m.bias, 0)
nn.init.constant_(m.weight, 1.0)
def get_num_layers(self) -> int:
"""Get number of transformer layers."""
return len(self.blocks)
def forward(self, x: torch.Tensor) -> torch.Tensor:
"""ViT decoder forward pass.
Args:
x: Input tensor of shape [B, dim_tokens, N_H, N_W].
Returns:
Output tensor of shape [B, C, H, W] or
[B, C, N_H, N_W] (patch projection disabled).
"""
B, D, N_H, N_W = x.shape
# Reshape into 1D
x = rearrange(x, 'b d nh nw -> b (nh nw) d')
if self.pos_emb is not None:
# Create positional embedding
x_pos_emb = F.interpolate(self.pos_emb, size=(N_H, N_W), mode='bicubic', align_corners=False)
x_pos_emb = rearrange(x_pos_emb, 'b d nh nw -> b (nh nw) d')
# Add positional embeddings to patches
x = x + x_pos_emb
# Transformer forward pass
x = self.blocks(x)
# Project each token to (C * P_H * P_W)
if hasattr(self, 'post_mlp'):
x = x + self.post_mlp(self.norm_mlp(x))
x = self.out_proj(x)
# Reshape sequence of patches into image or output features
ph, pw = (self.P_H, self.P_W) if self.patch_proj else (1, 1)
x = rearrange(
x, 'b (nh nw) (c ph pw) -> b c (nh ph) (nw pw)',
nh=N_H, nw=N_W, ph=ph, pw=pw, c=self.out_channels
)
# Optional conv layers to reduce patch artifacts
if hasattr(self, 'out_conv'):
x = self.out_conv(x)
return x
# Encoder presets
def vit_s_enc(in_channels,
patch_size,
resolution,
drop_rate=0.0,
attn_drop_rate=0.0,
drop_path_rate=0.0,
norm_layer=partial(nn.LayerNorm, eps=1e-6),
sincos_pos_emb=True,
learnable_pos_emb=False,
patch_proj=True,
post_mlp=False):
model = ViTEncoder(
in_channels=in_channels,
patch_size=patch_size,
resolution=resolution,
dim_tokens=512,
depth=8,
num_heads=8,
mlp_ratio=4,
qkv_bias=True,
drop_rate=drop_rate,
attn_drop_rate=attn_drop_rate,
drop_path_rate=drop_path_rate,
norm_layer=norm_layer,
sincos_pos_emb=sincos_pos_emb,
learnable_pos_emb=learnable_pos_emb,
patch_proj=patch_proj,
post_mlp=post_mlp,
)
return model
def vit_b_enc(in_channels,
patch_size,
resolution,
drop_rate=0.0,
attn_drop_rate=0.0,
drop_path_rate=0.0,
norm_layer=partial(nn.LayerNorm, eps=1e-6),
sincos_pos_emb=True,
learnable_pos_emb=False,
patch_proj=True,
post_mlp=False,
ckpt_path=None):
model = ViTEncoder(
in_channels=in_channels,
patch_size=patch_size,
resolution=resolution,
dim_tokens=768,
depth=12,
num_heads=12,
mlp_ratio=4,
qkv_bias=True,
drop_rate=drop_rate,
attn_drop_rate=attn_drop_rate,
drop_path_rate=drop_path_rate,
norm_layer=norm_layer,
sincos_pos_emb=sincos_pos_emb,
learnable_pos_emb=learnable_pos_emb,
patch_proj=patch_proj,
post_mlp=post_mlp,
ckpt_path=ckpt_path,
)
return model
def vit_l_enc(in_channels,
patch_size,
resolution,
drop_rate=0.0,
attn_drop_rate=0.0,
drop_path_rate=0.0,
norm_layer=partial(nn.LayerNorm, eps=1e-6),
sincos_pos_emb=True,
learnable_pos_emb=False,
patch_proj=True,
post_mlp=False):
model = ViTEncoder(
in_channels=in_channels,
patch_size=patch_size,
resolution=resolution,
dim_tokens=1024,
depth=24,
num_heads=16,
mlp_ratio=4,
qkv_bias=True,
drop_rate=drop_rate,
attn_drop_rate=attn_drop_rate,
drop_path_rate=drop_path_rate,
norm_layer=norm_layer,
sincos_pos_emb=sincos_pos_emb,
learnable_pos_emb=learnable_pos_emb,
patch_proj=patch_proj,
post_mlp=post_mlp,
)
return model
# Decoder presets
def vit_s_dec(out_channels,
patch_size,
resolution,
drop_rate=0.0,
attn_drop_rate=0.0,
drop_path_rate=0.0,
norm_layer=partial(nn.LayerNorm, eps=1e-6),
sincos_pos_emb=True,
learnable_pos_emb=False,
patch_proj=True,
post_mlp=False,
out_conv=False):
model = ViTDecoder(
out_channels=out_channels,
patch_size=patch_size,
resolution=resolution,
dim_tokens=512,
depth=8,
num_heads=8,
mlp_ratio=4,
qkv_bias=True,
drop_rate=drop_rate,
attn_drop_rate=attn_drop_rate,
drop_path_rate=drop_path_rate,
norm_layer=norm_layer,
sincos_pos_emb=sincos_pos_emb,
learnable_pos_emb=learnable_pos_emb,
patch_proj=patch_proj,
post_mlp=post_mlp,
out_conv=out_conv,
)
return model
def vit_b_dec(out_channels,
patch_size,
resolution,
drop_rate=0.0,
attn_drop_rate=0.0,
drop_path_rate=0.0,
norm_layer=partial(nn.LayerNorm, eps=1e-6),
sincos_pos_emb=True,
learnable_pos_emb=False,
patch_proj=True,
post_mlp=False,
out_conv=False):
model = ViTDecoder(
out_channels=out_channels,
patch_size=patch_size,
resolution=resolution,
dim_tokens=768,
depth=12,
num_heads=12,
mlp_ratio=4,
qkv_bias=True,
drop_rate=drop_rate,
attn_drop_rate=attn_drop_rate,
drop_path_rate=drop_path_rate,
norm_layer=norm_layer,
sincos_pos_emb=sincos_pos_emb,
learnable_pos_emb=learnable_pos_emb,
patch_proj=patch_proj,
post_mlp=post_mlp,
out_conv=out_conv,
)
return model
def vit_l_dec(out_channels,
patch_size,
resolution,
drop_rate=0.0,
attn_drop_rate=0.0,
drop_path_rate=0.0,
norm_layer=partial(nn.LayerNorm, eps=1e-6),
sincos_pos_emb=True,
learnable_pos_emb=False,
patch_proj=True,
post_mlp=False,
out_conv=False):
model = ViTDecoder(
out_channels=out_channels,
patch_size=patch_size,
resolution=resolution,
dim_tokens=1024,
depth=24,
num_heads=16,
mlp_ratio=4,
qkv_bias=True,
drop_rate=drop_rate,
attn_drop_rate=attn_drop_rate,
drop_path_rate=drop_path_rate,
norm_layer=norm_layer,
sincos_pos_emb=sincos_pos_emb,
learnable_pos_emb=learnable_pos_emb,
patch_proj=patch_proj,
post_mlp=post_mlp,
out_conv=out_conv,
)
return model