aroraaman's picture
Add all of `fourm`
3424266
raw
history blame
4.89 kB
# --------------------------------------------------------
# Based on the 4DHumans code base
# https://github.com/shubham-goel/4D-Humans
# --------------------------------------------------------
import torch
from typing import Any, Dict, Mapping, Tuple
from yacs.config import CfgNode
from ..utils import SkeletonRenderer, MeshRenderer
from ..utils.geometry import perspective_projection
from .backbones import create_backbone
from .heads import build_smpl_head
from . import SMPL
class HMR2(torch.nn.Module):
def __init__(self, cfg: CfgNode, init_renderer: bool = True):
"""
Setup HMR2 model
Args:
cfg (CfgNode): Config file as a yacs CfgNode
"""
super().__init__()
# Save hyperparameters
self.save_hyperparameters(logger=False, ignore=['init_renderer'])
self.cfg = cfg
# Create backbone feature extractor
self.backbone = create_backbone(cfg)
if cfg.MODEL.BACKBONE.get('PRETRAINED_WEIGHTS', None):
self.backbone.load_state_dict(torch.load(cfg.MODEL.BACKBONE.PRETRAINED_WEIGHTS, map_location='cpu')['state_dict'])
# Create SMPL head
self.smpl_head = build_smpl_head(cfg)
# Instantiate SMPL model
smpl_cfg = {k.lower(): v for k,v in dict(cfg.SMPL).items()}
self.smpl = SMPL(**smpl_cfg)
# Buffer that shows whetheer we need to initialize ActNorm layers
self.register_buffer('initialized', torch.tensor(False))
# Setup renderer for visualization
if init_renderer:
self.renderer = SkeletonRenderer(self.cfg)
self.mesh_renderer = MeshRenderer(self.cfg, faces=self.smpl.faces)
else:
self.renderer = None
self.mesh_renderer = None
# Disable automatic optimization since we use adversarial training
self.automatic_optimization = False
def forward_step(self, batch: Dict, train: bool = False) -> Dict:
"""
Run a forward step of the network
Args:
batch (Dict): Dictionary containing batch data
train (bool): Flag indicating whether it is training or validation mode
Returns:
Dict: Dictionary containing the regression output
"""
# Use RGB image as input
x = batch['img']
batch_size = x.shape[0]
# Compute conditioning features using the backbone
# if using ViT backbone, we need to use a different aspect ratio
conditioning_feats = self.backbone(x[:,:,:,32:-32])
pred_smpl_params, pred_cam, _ = self.smpl_head(conditioning_feats)
# Store useful regression outputs to the output dict
output = {}
output['pred_cam'] = pred_cam
output['pred_smpl_params'] = {k: v.clone() for k,v in pred_smpl_params.items()}
# Compute camera translation
device = pred_smpl_params['body_pose'].device
dtype = pred_smpl_params['body_pose'].dtype
focal_length = self.cfg.EXTRA.FOCAL_LENGTH * torch.ones(batch_size, 2, device=device, dtype=dtype)
pred_cam_t = torch.stack([pred_cam[:, 1],
pred_cam[:, 2],
2*focal_length[:, 0]/(self.cfg.MODEL.IMAGE_SIZE * pred_cam[:, 0] +1e-9)],dim=-1)
output['pred_cam_t'] = pred_cam_t
output['focal_length'] = focal_length
# Compute model vertices, joints and the projected joints
pred_smpl_params['global_orient'] = pred_smpl_params['global_orient'].reshape(batch_size, -1, 3, 3)
pred_smpl_params['body_pose'] = pred_smpl_params['body_pose'].reshape(batch_size, -1, 3, 3)
pred_smpl_params['betas'] = pred_smpl_params['betas'].reshape(batch_size, -1)
smpl_output = self.smpl(**{k: v.float() for k,v in pred_smpl_params.items()}, pose2rot=False)
pred_keypoints_3d = smpl_output.joints
pred_vertices = smpl_output.vertices
output['pred_keypoints_3d'] = pred_keypoints_3d.reshape(batch_size, -1, 3)
output['pred_vertices'] = pred_vertices.reshape(batch_size, -1, 3)
pred_cam_t = pred_cam_t.reshape(-1, 3)
focal_length = focal_length.reshape(-1, 2)
pred_keypoints_2d = perspective_projection(pred_keypoints_3d,
translation=pred_cam_t,
focal_length=focal_length / self.cfg.MODEL.IMAGE_SIZE)
output['pred_keypoints_2d'] = pred_keypoints_2d.reshape(batch_size, -1, 2)
return output
def forward(self, batch: Dict) -> Dict:
"""
Run a forward step of the network in val mode
Args:
batch (Dict): Dictionary containing batch data
Returns:
Dict: Dictionary containing the regression output
"""
return self.forward_step(batch, train=False)