Spaces:
Runtime error
Runtime error
# Copyright 2024 EPFL and Apple Inc. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
import math | |
import numpy as np | |
import torch | |
def enforce_zero_terminal_snr(betas: torch.Tensor) -> torch.Tensor: | |
"""Scales the noise schedule betas so that last time step has zero SNR. | |
See https://arxiv.org/abs/2305.08891 | |
Args: | |
betas: the initial diffusion noise schedule betas | |
Returns: | |
The diffusion noise schedule betas with the last time step having zero SNR | |
""" | |
# Convert betas to alphas_bar_sqrt | |
alphas = 1 - betas | |
alphas_bar = alphas.cumprod(0) | |
alphas_bar_sqrt = alphas_bar.sqrt() | |
# Store old values. | |
alphas_bar_sqrt_0 = alphas_bar_sqrt[0].clone() | |
alphas_bar_sqrt_T = alphas_bar_sqrt[-1].clone() | |
# Shift so last timestep is zero. | |
alphas_bar_sqrt -= alphas_bar_sqrt_T | |
# Scale so first timestep is back to old value. | |
alphas_bar_sqrt *= alphas_bar_sqrt_0 / ( | |
alphas_bar_sqrt_0 - alphas_bar_sqrt_T) | |
# Convert alphas_bar_sqrt to betas | |
alphas_bar = alphas_bar_sqrt ** 2 | |
alphas = alphas_bar[1:] / alphas_bar[:-1] | |
alphas = torch.cat([alphas_bar[0:1], alphas]) | |
betas = 1 - alphas | |
return betas | |
def betas_for_alpha_bar(num_diffusion_timesteps: int, max_beta: float = 0.999) -> torch.Tensor: | |
"""Create a beta schedule that discretizes the given alpha_t_bar function, | |
which defines the cumulative product of (1-beta) over time from t = [0,1]. | |
Contains a function alpha_bar that takes an argument t and transforms it to | |
the cumulative product of (1-beta) up to that part of the diffusion process. | |
Args: | |
num_diffusion_timesteps: the number of betas to produce. | |
max_beta: the maximum beta to use; use values lower than 1 to | |
prevent singularities. | |
Returns: | |
The betas used by the scheduler to step the model outputs | |
""" | |
def alpha_bar(time_step): | |
return math.cos((time_step + 0.008) / 1.008 * math.pi / 2) ** 2 | |
betas = [] | |
for i in range(num_diffusion_timesteps): | |
t1 = i / num_diffusion_timesteps | |
t2 = (i + 1) / num_diffusion_timesteps | |
betas.append(min(1 - alpha_bar(t2) / alpha_bar(t1), max_beta)) | |
return torch.tensor(betas, dtype=torch.float32) | |
def scaled_cosine_alphas(num_diffusion_timesteps: int, noise_shift: float = 1.0) -> torch.Tensor: | |
"""Shifts a cosine noise schedule by a specified amount in log-SNR space. | |
noise_shift = 1.0 corresponds to the standard cosine noise schedule. | |
0 < noise_shift < 1.0 corresponds to a less noisy schedule (better | |
suited if the conditioning is highly informative, e.g. low-res images). | |
noise_shift > 1.0 corresponds to a more noisy schedule (better suited | |
if the conditioning is not as informative, e.g. captions). | |
See https://arxiv.org/abs/2305.18231 | |
Args: | |
num_diffusion_timesteps: the number of diffusion timesteps. | |
noise_shift: the amount to shift the noise schedule by in log-SNR space. | |
Returns: | |
The alphas_cumprod used by the diffusion noise scheduler | |
""" | |
t = torch.linspace(0, 1, num_diffusion_timesteps).to(torch.float64) | |
log_snr = -2 * (torch.tan(torch.pi * t / 2).log() + np.log(noise_shift)) | |
log_snr = log_snr.clamp(-15,15).float() | |
alphas_cumprod = log_snr.sigmoid() | |
alphas_cumprod[-1] = 0.0 | |
return alphas_cumprod |