aroraaman's picture
Add all of `fourm`
3424266
# Copyright 2024 EPFL and Apple Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import gzip
import json
import random
from pathlib import Path
from typing import Optional, Tuple, List, Dict
from abc import ABC, abstractmethod
from PIL import Image
import cv2
import albumentations as A
import numpy as np
import torch
import torchvision.transforms.functional as TF
import torchvision.transforms as T
from einops import rearrange, repeat, reduce
from fourm.utils import to_2tuple
from fourm.utils.data_constants import (IMAGENET_DEFAULT_MEAN,
IMAGENET_DEFAULT_STD, IMAGENET_INCEPTION_MEAN,
IMAGENET_SURFACE_NORMAL_STD, IMAGENET_SURFACE_NORMAL_MEAN,
IMAGENET_INCEPTION_STD, SEG_IGNORE_INDEX, PAD_MASK_VALUE)
# The @-symbol is used to specify the resolution of a modality. Syntax: modality@resolution
def get_transform_key(mod_name):
return mod_name.split('@')[0]
def get_transform_resolution(mod_name, default_resolution, to_tuple=True):
res = int(mod_name.split('@')[1]) if '@' in mod_name else default_resolution
return to_2tuple(res) if to_tuple else res
def get_transform(mod_name, transforms_dict):
return transforms_dict.get(get_transform_key(mod_name), IdentityTransform())
def get_pil_resample_mode(resample_mode: str):
"""
Returns the PIL resampling mode for the given resample mode string.
Args:
resample_mode: Resampling mode string
"""
if resample_mode is None:
return None
elif resample_mode == "bilinear":
return Image.Resampling.BILINEAR if hasattr(Image, 'Resampling') else Image.BILINEAR
elif resample_mode == "bicubic":
return Image.Resampling.BICUBIC if hasattr(Image, 'Resampling') else Image.BICUBIC
elif resample_mode == "nearest":
return Image.Resampling.NEAREST if hasattr(Image, 'Resampling') else Image.NEAREST
else:
raise ValueError(f"Resample mode {resample_mode} is not supported.")
class UnifiedDataTransform(object):
def __init__(self, transforms_dict, image_augmenter, resample_mode: str = None, add_sizes: bool = False, **kwargs):
"""Unified data augmentation for FourM
Args:
transforms_dict (dict): Dict of transforms for each modality
image_augmenter (AbstractImageAugmenter): Image augmenter
resample_mode (str, optional): Resampling mode for PIL images (default: None -> uses default resampling mode for data type)
One out of ["bilinear", "bicubic", "nearest", None].
add_sizes (bool, optional): Whether to add crop coordinates and original size to the output dict
"""
self.transforms_dict = transforms_dict
self.image_augmenter = image_augmenter
self.resample_mode = resample_mode
self.add_sizes = add_sizes
def unified_image_augment(self, mod_dict, crop_settings):
"""Apply the image augmenter to all modalities where it is applicable
Args:
mod_dict (dict): Dict of modalities
crop_settings (dict): Crop settings
Returns:
dict: Transformed dict of modalities
"""
crop_coords, flip, orig_size, target_size, rand_aug_idx = self.image_augmenter(mod_dict, crop_settings)
mod_dict = {
k: self.transforms_dict[get_transform_key(k)].image_augment(
v, crop_coords=crop_coords, flip=flip, orig_size=orig_size,
target_size=get_transform_resolution(k, target_size), rand_aug_idx=rand_aug_idx,
resample_mode=self.resample_mode
)
for k, v in mod_dict.items()
}
if self.add_sizes:
mod_dict["crop_coords"] = torch.tensor(crop_coords)
mod_dict["orig_size"] = torch.tensor(orig_size)
return mod_dict
def __call__(self, mod_dict):
"""Apply the augmentation to a dict of modalities (both image based and sequence based modalities)
Args:
mod_dict (dict): Dict of modalities
Returns:
dict: Transformed dict of modalities
"""
crop_settings = mod_dict.pop("crop_settings", None)
mod_dict = {k: get_transform(k, self.transforms_dict).preprocess(v) for k, v in mod_dict.items()}
mod_dict = self.unified_image_augment(mod_dict, crop_settings)
mod_dict = {k: get_transform(k, self.transforms_dict).postprocess(v) for k, v in mod_dict.items()}
return mod_dict
def __repr__(self):
repr = "(UnifiedDataAugmentation,\n"
repr += ")"
return repr
class AbstractTransform(ABC):
@abstractmethod
def load(self, sample):
pass
@abstractmethod
def preprocess(self, sample):
pass
@abstractmethod
def image_augment(self, v, crop_coords: Tuple, flip: bool, orig_size: Tuple, target_size: Tuple,
rand_aug_idx: Optional[int], resample_mode: str = None):
pass
@abstractmethod
def postprocess(self, v):
pass
class ImageTransform(AbstractTransform):
@staticmethod
def pil_loader(path: str) -> Image.Image:
# open path as file to avoid ResourceWarning (https://github.com/python-pillow/Pillow/issues/835)
# with open(path, 'rb') as f:
# img = Image.open(f)
img = Image.open(path)
return img
@staticmethod
def image_hflip(img: Image, flip: bool):
"""Crop and resize an image
:param img: Image to crop and resize
:param flip: Whether to flip the image
:return: Flipped image (if flip = True)
"""
if flip:
img = TF.hflip(img)
return img
@staticmethod
def image_crop_and_resize(img: Image, crop_coords: Tuple, target_size: Tuple, resample_mode: str = None):
"""Crop and resize an image
:param img: Image to crop and resize
:param crop_coords: Coordinates of the crop (top, left, h, w)
:param target_size: Coordinates of the resize (height, width)
:return: Cropped and resized image
"""
top, left, h, w = crop_coords
resize_height, resize_width = target_size
img = TF.crop(img, top, left, h, w)
resample_mode = get_pil_resample_mode(resample_mode)
img = img.resize((resize_height, resize_width), resample=resample_mode)
return img
class RGBTransform(ImageTransform):
def __init__(self, imagenet_default_mean_and_std=True, color_jitter=False, color_jitter_strength=0.5):
self.rgb_mean = IMAGENET_INCEPTION_MEAN if not imagenet_default_mean_and_std else IMAGENET_DEFAULT_MEAN
self.rgb_std = IMAGENET_INCEPTION_STD if not imagenet_default_mean_and_std else IMAGENET_DEFAULT_STD
self.color_jitter = color_jitter
self.color_jitter_transform = self.random_color_jitter(color_jitter_strength)
def random_color_jitter(self, strength=0.5):
# Color Jitter from Pix2Seq and SimCLR
# Source: https://github.com/google-research/pix2seq/blob/main/data/data_utils.py#L114
t = T.Compose([
T.RandomApply([T.ColorJitter(brightness=0.8 * strength, contrast=0.8 * strength, saturation=0.8 * strength, hue=0.2 * strength)], p=0.8),
T.RandomApply([T.Grayscale(num_output_channels=3)], p=0.2),
])
return t
def rgb_to_tensor(self, img):
img = TF.to_tensor(img)
img = TF.normalize(img, mean=self.rgb_mean, std=self.rgb_std)
return img
def load(self, path):
# TODO: Instead of converting to RGB here, do it either in the preprocess or the postprocess step. Makes it compatible with wds dataloading.
sample = self.pil_loader(path)
return sample
def preprocess(self, sample):
sample = sample.convert('RGB')
if self.color_jitter:
sample = self.color_jitter_transform(sample)
return sample
def image_augment(self, img, crop_coords: Tuple, flip: bool, orig_size: Tuple, target_size: Tuple,
rand_aug_idx: Optional[int], resample_mode: str = None):
img = self.image_crop_and_resize(img, crop_coords, target_size, resample_mode=resample_mode)
img = self.image_hflip(img, flip)
return img
def postprocess(self, sample):
sample = self.rgb_to_tensor(sample)
return sample
class DepthTransform(ImageTransform):
def __init__(self, standardize_depth=True):
self.standardize_depth = standardize_depth
def depth_to_tensor(self, img):
img = torch.Tensor( img / (2 ** 16 - 1.0) )
img = img.unsqueeze(0) # 1 x H x W
if self.standardize_depth:
img = self.truncated_depth_standardization(img)
return img
@staticmethod
def truncated_depth_standardization(depth, thresh: float = 0.1):
"""Truncated depth standardization
:param depth: Depth map
:param thresh: Threshold
:return: Robustly standardized depth map
"""
# Flatten depth and remove bottom and top 10% of values
trunc_depth = torch.sort(depth.reshape(-1), dim=0)[0]
trunc_depth = trunc_depth[int(thresh * trunc_depth.shape[0]): int((1 - thresh) * trunc_depth.shape[0])]
return (depth - trunc_depth.mean()) / torch.sqrt(trunc_depth.var() + 1e-6)
def load(self, path):
sample = self.pil_loader(path)
return sample
def preprocess(self, sample):
return sample
def image_augment(self, img, crop_coords: Tuple, flip: bool, orig_size: Tuple, target_size: Tuple,
rand_aug_idx: Optional[int], resample_mode: str = None):
img = self.image_crop_and_resize(img, crop_coords, target_size, resample_mode=resample_mode)
img = self.image_hflip(img, flip)
return img
def postprocess(self, sample):
sample = np.array(sample)
sample = self.depth_to_tensor(sample)
return sample
class NormalTransform(ImageTransform):
def __init__(self, standardize_surface_normals=False):
self.normal_mean = (0.5, 0.5, 0.5) if not standardize_surface_normals else IMAGENET_SURFACE_NORMAL_MEAN
self.normal_std = (0.5, 0.5, 0.5) if not standardize_surface_normals else IMAGENET_SURFACE_NORMAL_STD
def normal_to_tensor(self, img):
img = TF.to_tensor(img)
img = TF.normalize(img, mean=self.normal_mean, std=self.normal_std)
return img
def load(self, path):
sample = self.pil_loader(path)
return sample
def preprocess(self, sample):
return sample
def image_hflip(self, img: Image, flip: bool):
if flip:
img = TF.hflip(img)
flipped_np = np.array(img)
flipped_np[:, :, 0] = 255 - flipped_np[:, :, 0]
img = Image.fromarray(flipped_np)
return img
def image_augment(self, img, crop_coords: Tuple, flip: bool, orig_size: Tuple, target_size: Tuple,
rand_aug_idx: Optional[int], resample_mode: str = None):
img = self.image_crop_and_resize(img, crop_coords, target_size, resample_mode=resample_mode)
img = self.image_hflip(img, flip)
return img
def postprocess(self, sample):
sample = self.normal_to_tensor(sample)
return sample
class SemsegTransform(ImageTransform):
def __init__(self, scale_factor=1.0, shift_idx_by_one=False, id_mapping: Optional[Dict] = None, select_channel=None):
self.scale_factor = scale_factor
self.shift_idx_by_one = shift_idx_by_one
self.id_mapping = id_mapping
self.select_channel = select_channel
def map_semseg_values(self, sample):
sample = np.asarray(sample)
mapping_fn = lambda x: self.id_mapping.get(x, x)
sample = np.vectorize(mapping_fn)(sample)
sample = Image.fromarray(sample, mode='P')
return sample
def semseg_to_tensor(self, img):
# Rescale to scale factor
if self.scale_factor != 1.0:
target_height, target_width = int(img.height * self.scale_factor), int(img.width * self.scale_factor)
img = img.resize((target_width, target_height))
# Using pil_to_tensor keeps it in uint8, to_tensor converts it to float (rescaled to [0, 1])
img = TF.pil_to_tensor(img).to(torch.long).squeeze(0)
# 255->0, 254->0, all else shifted up by one
return img
def load(self, path):
sample = self.pil_loader(path)
if self.select_channel is not None:
sample = sample.split()[self.select_channel]
return sample
def preprocess(self, sample):
sample = sample.convert('P')
if self.id_mapping is not None:
sample = self.map_semseg_values(sample)
if self.shift_idx_by_one:
sample = np.asarray(sample)
sample = sample + 1
sample = Image.fromarray(sample, mode='P')
return sample
def image_augment(self, img, crop_coords: Tuple, flip: bool, orig_size: Tuple, target_size: Tuple,
rand_aug_idx: Optional[int], resample_mode: str = None):
# Value for padding with TF.crop is always 0.
# Override resampling mode to 'nearest' for semseg
img = self.image_crop_and_resize(img, crop_coords, target_size, resample_mode='nearest')
img = self.image_hflip(img, flip)
return img
def postprocess(self, sample):
img = self.semseg_to_tensor(sample)
return img
class SAMInstanceTransform(AbstractTransform):
def __init__(self, mask_size=64, max_instance_n=20, bbox_area_threshold=0.0005):
self.mask_size = mask_size
self.max_instance_n = max_instance_n
self.bbox_area_threshold = bbox_area_threshold
def get_bbox(self, instance):
""" Gets bounding box of the given instance
"""
min_h, max_h = instance[:,:,1].min(), instance[:,:,1].max()
min_w, max_w = instance[:,:,0].min(), instance[:,:,0].max()
return [min_h, min_w, max_h, max_w]
def extend_instance_points(self, instance, border_fn):
""" Given an instance and a border function `border_fn`, extends the instance points with crossing points between the instance and
the crop borders. The crossing points are obtained using border_fn.
"""
p = instance[:,0]
p_next = np.roll(p, (-1), axis=(0))
final_points = []
for x, xn in zip(p, p_next):
final_points.append(x)
for r in border_fn(x, xn):
final_points.append(r.astype(np.int32))
p = np.stack(final_points)
return p[:,None]
def remove_redundant_lines(self, orig_instance, instance):
""" Removes the redundant lines added during cropping.
"""
final_points = []
for p in instance:
distance = cv2.pointPolygonTest(orig_instance, (p[0,0].item(), p[0,1].item()), measureDist=True)
if distance >= 0:
final_points.append(p[0])
return np.stack(final_points)[:,None]
def get_border_functions(self, crop_points):
""" Creates and returns a function `fn` using crop region coordinates given in crop_points.
`fn` receives two input points x and xn and returns all the crossing points between the line connecting
x and xn, and the borders of the cropping rectangle.
"""
p = crop_points[:,0]
p_next = np.roll(p, (-1), axis=(0))
def fn(x, xn):
output = []
c_diff = p_next - p
x_diff = x - xn
for diff, c in zip(c_diff, p):
A = np.array([
[diff[0], x_diff[0]],
[diff[1], x_diff[1]]
])
b = x - c
try:
lmbda = np.linalg.solve(A, b)
if 0 <= lmbda[0] <= 1 and 0 <= lmbda[1] <= 1:
output.append(lmbda[1] * xn + (1-lmbda[1]) * x)
except:
continue
return output
return fn
def crop_sample(self, sample, crop_coords):
""" Crop the sample using crop coordinates.
"""
top, left, h, w = crop_coords
crop_region = (left, top, left + w, top + h)
crop_points = np.array([
[crop_region[0], crop_region[1]],
[crop_region[2], crop_region[1]],
[crop_region[2], crop_region[3]],
[crop_region[0], crop_region[3]],
])[:,None]
border_functions = self.get_border_functions(crop_points)
cropped_sample = []
for instance in sample:
instance = self.extend_instance_points(instance, border_functions)
filter_condition = (
(instance[:, :, 0] > crop_region[0]) &
(instance[:, :, 0] < crop_region[2]) &
(instance[:, :, 1] > crop_region[1]) &
(instance[:, :, 1] < crop_region[3])
)
if not np.any(filter_condition):
continue
instance_copy = instance.copy()
instance_copy[:, :, 0] = np.clip(instance[:, :, 0], a_min=crop_region[0], a_max=crop_region[2])
instance_copy[:, :, 1] = np.clip(instance[:, :, 1], a_min=crop_region[1], a_max=crop_region[3])
instance_copy = self.remove_redundant_lines(instance, instance_copy)
instance_copy[:, :, 0] -= crop_region[0]
instance_copy[:, :, 1] -= crop_region[1]
cropped_sample.append(instance_copy)
return cropped_sample
def resize_sample(self, sample, original_size, target_size):
""" Resize the sample
"""
width_scale = target_size[1] / original_size[1]
height_scale = target_size[0] / original_size[0]
resized_sample = []
for instance in sample:
instance_copy = instance.copy()
instance_copy[:, :, 0] = np.round(width_scale * instance_copy[:, :, 0])
instance_copy[:, :, 1] = np.round(height_scale * instance_copy[:, :, 1])
resized_sample.append(instance_copy)
return resized_sample
def remove_tiny_instances(self, sample, image_size):
""" Remove instances that have an area ratio smaller than `bbox_area_threshold`.
"""
filtered_sample = []
for instance in sample:
min_h, min_w, max_h, max_w = self.get_bbox(instance)
bbox_area_ratio = (max_h - min_h) * (max_w - min_w) / (image_size[0] * image_size[1])
if bbox_area_ratio < self.bbox_area_threshold:
continue
filtered_sample.append(instance)
return filtered_sample
def hflip(self, sample, width):
""" Horizontal flipping the instances in a sample.
"""
flipped_sample = []
for instance in sample:
instance_copy = instance.copy()
instance_copy[:, :, 0] = width - instance_copy[:, :, 0]
flipped_sample.append(instance_copy)
return flipped_sample
def get_binary_masks(self, sample):
""" Creates the binary mask of each instance in the sample.
"""
if self.max_instance_n is None:
max_instance_n = len(sample)
else:
max_instance_n = self.max_instance_n
masks = np.zeros((max_instance_n, self.mask_size, self.mask_size))
bboxes = np.zeros((max_instance_n, 4))
valid = np.full(max_instance_n, False)
for i, instance in enumerate(sample):
bbox = self.get_bbox(instance)
min_h, min_w, max_h, max_w = bbox
instance_copy = instance.copy()
mask = np.zeros((self.mask_size, self.mask_size), dtype=np.uint8)
instance_copy[:,:,0] = (instance_copy[:,:,0] - min_w) / (max_w - min_w) * self.mask_size
instance_copy[:,:,1] = (instance_copy[:,:,1] - min_h) / (max_h - min_h) * self.mask_size
cv2.drawContours(mask, [instance_copy], 0, (255), thickness=cv2.FILLED)
masks[i] = mask / 255.0
bboxes[i] = np.array(bbox)
valid[i] = True
return masks, bboxes, valid
def load(self, path):
sample = np.load(path, allow_pickle=True)
return sample
def preprocess(self, sample):
if self.max_instance_n is None or len(sample) <= self.max_instance_n:
indecies = np.arange(len(sample))
else:
indecies = np.random.choice(len(sample), size=self.max_instance_n, replace=False)
return [p['points'] for i, p in enumerate(sample) if i in indecies]
def image_augment(self, v, crop_coords: Tuple, flip: bool, orig_size: Tuple, target_size: Tuple,
rand_aug_idx: Optional[int], resample_mode: str = None):
v = self.crop_sample(v, crop_coords)
_, _, h, w = crop_coords
v = self.resize_sample(v, (h, w), target_size)
v = self.remove_tiny_instances(v, target_size)
if flip:
v = self.hflip(v, target_size[0])
return v
def postprocess(self, sample):
sample, bboxes, valid = self.get_binary_masks(sample)
return {
'instance': torch.from_numpy(sample).to(torch.float32),
'bbox': torch.from_numpy(bboxes).to(torch.float32),
'valid': torch.from_numpy(valid)
}
class MaskTransform(ImageTransform):
def __init__(self, mask_pool_size=1):
assert isinstance(mask_pool_size, int)
self.mask_pool_size = mask_pool_size # Use to expand masks
def mask_to_tensor(self, img):
mask = TF.to_tensor(img)
if self.mask_pool_size > 1:
mask = reduce(mask, 'c (h1 h2) (w1 w2) -> c h1 w1', 'min', h2=self.mask_pool_size, w2=self.mask_pool_size)
mask = repeat(mask, 'c h1 w1 -> c (h1 h2) (w1 w2)', h2=self.mask_pool_size, w2=self.mask_pool_size)
return (mask == 1.0)
def load(self, path):
sample = self.pil_loader(path)
return sample
def preprocess(self, sample):
return sample
def image_augment(self, img, crop_coords: Tuple, flip: bool, orig_size: Tuple, target_size: Tuple,
rand_aug_idx: Optional[int], resample_mode: str = None):
# Override resampling mode to 'nearest' for masks
img = self.image_crop_and_resize(img, crop_coords, target_size, resample_mode='nearest')
img = self.image_hflip(img, flip)
return img
def postprocess(self, sample):
sample = self.mask_to_tensor(sample)
return sample
class TokTransform(AbstractTransform):
def __init__(self):
pass
def load(self, path):
sample = np.load(path).astype(int)
return sample
def preprocess(self, sample):
return sample
def image_augment(self, v, crop_coords: Tuple, flip: bool, orig_size: Tuple, target_size: Tuple,
rand_aug_idx: Optional[int], resample_mode: str = None):
if rand_aug_idx is None:
raise ValueError("Crop settings / augmentation index are missing but a pre-tokenized modality is being used")
v = torch.tensor(v[rand_aug_idx])
return v
def postprocess(self, sample):
return sample
class DetectionTransform(AbstractTransform):
def __init__(self, det_threshold=0.6, det_max_instances=None, bbox_order='dist_to_orig', coord_bins=1000, min_visibility=0.0, return_raw=False):
self.det_threshold = det_threshold
self.det_max_instances = det_max_instances
self.coord_bins = coord_bins
self.min_visibility = min_visibility
self.return_raw = return_raw
if bbox_order == 'area':
self.bbox_order = self.order_bboxes_by_area
elif bbox_order == 'score':
self.bbox_order = self.order_bboxes_by_score
elif bbox_order == 'random':
self.bbox_order = self.shuffle_bboxes
else:
self.bbox_order = self.order_bboxes_by_dist_to_orig
@staticmethod
def order_bboxes_by_area(bboxes):
return sorted(bboxes, key=lambda x: (x[2] - x[0]) * (x[3] - x[1]), reverse=True)
@staticmethod
def order_bboxes_by_dist_to_orig(bboxes):
return sorted(bboxes, key=lambda x: x[0] ** 2 + x[1] ** 2)
@staticmethod
def order_bboxes_by_score(bboxes):
return sorted(bboxes, key=lambda x: x[5], reverse=True)
@staticmethod
def shuffle_bboxes(bboxes):
return sorted(bboxes, key=lambda x: random.random())
def convert_detection_instance(self, instances):
"""Convert instances dict to list of lists where each list takes the form:
[xmin, ymin, xmax, ymax, class_name, score]
"""
instances = [inst['boxes'] + [inst['class_name'], inst['score']] for inst in instances if inst['score'] >= self.det_threshold]
return instances
def bboxes_hflip(self, bboxes: List[Tuple], image_size: Tuple, flip: bool):
image_height, image_width = image_size
if flip:
bboxes = [tuple(A.bbox_hflip(bbox[:4], rows=image_height, cols=image_width)) + tuple(bbox[4:])
for bbox in bboxes]
return bboxes
def bboxes_crop_and_resize(self, bboxes: List[Tuple], crop_coords: Tuple, orig_size: Tuple):
"""Crop and resize bounding boxes
Args:
bboxes: Bounding boxes to crop and resize
crop_coords: Coordinates of the crop (top, left, h, w)
orig_size: Size of the original image
Returns:
Cropped and resized bounding boxes
"""
orig_height, orig_width = orig_size
top, left, h, w = crop_coords
xmin, ymin, xmax, ymax = left, top, left + w, top + h
bboxes = [tuple(A.bbox_crop(bbox[:4], x_min=xmin, y_min=ymin, x_max=xmax, y_max=ymax, rows=orig_height,
cols=orig_width)) + tuple(bbox[4:])
for bbox in bboxes]
bboxes = A.core.bbox_utils.filter_bboxes(bboxes, rows=h, cols=w, min_visibility=self.min_visibility)
# No need to resize, bounding boxes in albumentations format are scale invariant
return bboxes
def order_and_filter_bboxes(self, bboxes):
if self.det_max_instances is not None and len(bboxes) > self.det_max_instances:
bboxes = self.order_bboxes_by_score(bboxes)[:self.det_max_instances]
return self.bbox_order(bboxes)
def convert_bboxes_to_string(self, bboxes: List[Tuple]):
"""Convert bounding boxes to a string.
xmin, ymin, xmax, ymax are mapped to v0, v1, v2, v3 special tokens.
Args:
bboxes: Bounding boxes
Returns:
String representation of the bounding boxes
"""
# Remove score, quantize coordinates
bins = self.coord_bins
bboxes = [
[
f"v0={round(xmin * (bins - 1))}",
f"v1={round(ymin * (bins - 1))}",
f"v2={round(xmax * (bins - 1))}",
f"v3={round(ymax * (bins - 1))}",
cls,
]
for (xmin, ymin, xmax, ymax, cls, score) in bboxes
]
# Convert each bounding box to a string
bboxes = [' '.join(b) for b in bboxes]
# Convert the list to a str
return ' '.join(bboxes)
def load(self, path):
with open(path, 'r') as f:
sample = json.load(f)
return sample
def preprocess(self, sample):
instances = sample['instances']
return self.convert_detection_instance(instances)
def image_augment(self, bboxes: List[Tuple], crop_coords: Tuple, flip: bool, orig_size: Tuple, target_size: Tuple,
rand_aug_idx=None, resample_mode: str = None):
bboxes = self.bboxes_crop_and_resize(bboxes, crop_coords, orig_size)
bboxes = self.bboxes_hflip(bboxes, target_size, flip)
bboxes = self.order_and_filter_bboxes(bboxes)
return bboxes
def postprocess(self, bboxes):
if self.return_raw:
return bboxes
bboxes = self.convert_bboxes_to_string(bboxes)
return bboxes
class CaptionTransform(AbstractTransform):
def __init__(self, aligned_captions=True, no_aug=False):
self.aligned_captions = aligned_captions
self.no_aug = no_aug
def load(self, path):
# Caption can either be stored as .txt or .json.gz (in which case it's a list of dicts)
if path.endswith('.txt'):
sample = Path(path).read_text()
elif path.endswith('.json'):
with open(path, 'r') as f:
sample = json.load(f)
elif path.endswith('.json.gz'):
with gzip.open(path, 'rb') as f:
sample = json.load(f)
return sample
def preprocess(self, sample):
return sample
def image_augment(self, val, crop_coords: Tuple, flip: bool, orig_size: Tuple, target_size: Tuple,
rand_aug_idx: Optional[int], resample_mode: str = None):
if isinstance(val, list) or isinstance(val, tuple):
if self.aligned_captions:
val = val[0] if rand_aug_idx is None else val[rand_aug_idx]
else:
val = random.choice(val) if not self.no_aug else val[0]
if isinstance(val, dict):
# If each caption is saved as a dict, extract the string
val = val["caption"]
assert isinstance(val, str)
return val
def postprocess(self, sample):
return sample
class CaptionEmbTransform(AbstractTransform):
def __init__(self, aligned_captions=True, no_aug=False):
self.aligned_captions = aligned_captions
self.no_aug = no_aug
def load(self, path):
if path.endswith('.npz'):
sample = np.load(path)
sample = {'emb': sample['emb'], 'mask_valid': sample['mask_valid']}
else:
raise ValueError(f"Invalid file format for caption embedding: {path}")
return sample
def preprocess(self, sample):
return sample
def image_augment(self, val, crop_coords: Tuple, flip: bool, orig_size: Tuple, target_size: Tuple,
rand_aug_idx: Optional[int], resample_mode: str = None):
emb = val['emb']
mask_valid = val['mask_valid'].astype(bool)
num_sequences = emb.shape[0]
if num_sequences > 1:
if self.aligned_captions:
if rand_aug_idx is None:
emb, mask_valid = emb[0], mask_valid[0]
else:
emb, mask_valid = emb[rand_aug_idx], mask_valid[rand_aug_idx]
else:
if self.no_aug:
emb, mask_valid = emb[0], mask_valid[0]
else:
rand_idx = random.randint(0, num_sequences - 1)
emb, mask_valid = emb[rand_idx], mask_valid[rand_idx]
else:
emb, mask_valid = emb[0], mask_valid[0]
emb = emb[mask_valid] # Keep only valid embeddings
return emb
def postprocess(self, sample):
return torch.tensor(sample)
class MetadataTransform(AbstractTransform):
def __init__(self,
special_vmin: int = 0,
special_vmax: int = 999,
shuffle: bool = True,
random_trunc: bool = False,
return_chunks: bool = True,
return_raw: bool = False,
image_dim_bin_size: int = 32,):
"""Metadata transform that takes in a metadata dictionary and converts
it into a string, or list of strings (for chunked span masking).
Uses special tokens v1 to denote metadata types, and v0 for their values.
Args:
special_vmin: Minimum value for special tokens
special_vmax: Maximum value for special tokens
shuffle: Whether to shuffle the metadata order
random_trunc: Whether to randomly truncate the returned metadata
return_chunks: Whether to return a list of strings (for chunked span masking),
or a single string with all metadata concatenated
return_raw: Whether to return the raw metadata dictionary
"""
self.special_vmin = special_vmin
self.special_vmax = special_vmax
self.shuffle = shuffle
self.random_trunc = random_trunc
self.return_chunks = return_chunks
self.return_raw = return_raw
self.image_dim_bin_size = image_dim_bin_size
# Explicit map to make sure that additional entries do not change existing IDs
# TODO: Make this work with other text tokenizers
self.metadata_id_map = {
'original_width': 'v1=0',
'original_height': 'v1=1',
'caption_n_chars': 'v1=2',
'caption_n_words': 'v1=3',
'caption_n_sentences': 'v1=4',
'n_humans': 'v1=5',
'n_sam_instances': 'v1=6',
'n_coco_instances': 'v1=7',
'coco_instance_diversity': 'v1=8',
'colorfulness': 'v1=9',
'brightness': 'v1=10',
'contrast': 'v1=11',
'saturation': 'v1=12',
'entropy': 'v1=13',
'walkability': 'v1=14',
'objectness': 'v1=15',
'semantic_diversity': 'v1=16',
'geometric_complexity': 'v1=17',
'occlusion_score': 'v1=18',
'watermark_score': 'v1=19',
'aesthetic_score': 'v1=20',
}
self.id_metadata_map = {v: k for k, v in self.metadata_id_map.items()}
# Image-dimension modalities are binned into 32 bins
self.image_dim_modalities = ['original_height', 'original_width']
# Integer modalities that don't undergo any scaling (except for truncation)
self.metadata_int_modalities = [
'caption_n_chars', 'caption_n_words', 'caption_n_sentences',
'n_humans', 'n_sam_instances', 'n_coco_instances',
'coco_instance_diversity', 'semantic_diversity',
]
# Bin boundaries for manually defined metadata modalities.
# Lowest and highest bin boundaries are implicitly set to -inf and +inf
self.metadata_manual_bins = {
'watermark_score': [0.5],
'aesthetic_score': [4.5, 5.5],
}
# All other float or integer modalities that are binned into a defined number of bins
# Dictionary entries are (vmin, vmax, num_bins)
self.metadata_min_max_bins = {
'colorfulness': (0, 150, 50),
'brightness': (0, 255, 50),
'contrast': (0, 127, 50),
'saturation': (0, 255, 50),
'entropy': (0, 10, 50),
'walkability': (0, 1, 50),
'objectness': (0, 1, 50),
'geometric_complexity': (0, 0.75, 50),
'occlusion_score': (0, 0.25, 50),
}
def image_dim_to_string(self, metadata, key, bin_size=32):
value = metadata[key] // bin_size
value = max(self.special_vmin, min(value, self.special_vmax))
return f"{self.metadata_id_map[key]} v0={value}"
def int_metadata_to_string(self, metadata, key):
value = max(self.special_vmin, min(metadata[key], self.special_vmax))
return f"{self.metadata_id_map[key]} v0={value}"
def float_metadata_to_string(self, metadata, key, vmin, vmax, bins):
value = max(vmin, min(metadata[key], vmax))
value = (value - vmin) / (vmax - vmin)
value = int(value * (bins-1))
return f"{self.metadata_id_map[key]} v0={value}"
def manual_bin_metadata_to_string(self, metadata, key):
value = metadata[key]
bin_idx = 0
for bin_value in self.metadata_manual_bins[key]:
if value < bin_value:
break
bin_idx += 1
return f"{self.metadata_id_map[key]} v0={bin_idx}"
def metadata_to_string(self, metadata, keys: List[str] = None):
keys = list(metadata.keys()) if keys is None else keys
if self.shuffle:
# Randomly shuffle
random.shuffle(keys)
if self.random_trunc:
# Randomly truncate
keys = keys[:random.randint(1,len(keys))]
metadata_strings = []
for key in keys:
if key in self.image_dim_modalities:
# Image dimension modalities
metadata_str = self.image_dim_to_string(metadata, key, bin_size=self.image_dim_bin_size)
elif key in self.metadata_int_modalities:
# Integer modalities that don't undergo any scaling
metadata_str = self.int_metadata_to_string(metadata, key)
elif key in self.metadata_manual_bins:
# Metadata modalities for which bin boundaries are manually defined
metadata_str = self.manual_bin_metadata_to_string(metadata, key)
else:
# All other modalities
vmin, vmax, bins = self.metadata_min_max_bins[key]
metadata_str = self.float_metadata_to_string(metadata, key, vmin, vmax, bins)
metadata_strings.append(metadata_str)
if self.return_chunks:
return metadata_strings
else:
return ' '.join(metadata_strings)
def load(self, path):
with open(path, 'r') as f:
sample = json.load(f)
return sample
def preprocess(self, sample):
return sample
def image_augment(self, val, crop_coords: Tuple, flip: bool, orig_size: Tuple, target_size: Tuple,
rand_aug_idx=None, resample_mode: str = None):
return val
def postprocess(self, metadata):
if self.return_raw:
return metadata
metadata_str = self.metadata_to_string(metadata)
return metadata_str
class HumanPoseTransform(AbstractTransform):
def __init__(self, coord_bins=1000, only_pose=False, return_raw=False):
self.coord_bins = coord_bins
self.return_raw = return_raw
self.only_pose = only_pose
def convert_humanpose_instance(self, instances, only_pose=False):
"""Convert instances dict to list of lists where each list takes the form:
[human, xmin xmax ymin ymax global val1 val2 ... val10 pose val1 val2 ... val 207 shape val1 val2 ... val10 camera val1 val2 val3 val4]
Like for bounding boxes, xmin, ymin, xmax, and ymax map to v0, v1, v2, and v3 respectively.
"""
if only_pose: # used for tokenizer training for pose
if len(instances) == 0:
return torch.zeros(207)
else:
return torch.from_numpy(np.array(instances['pred_smpl_params']['body_pose'][0]).flatten()).float()
if len(instances) == 0: #empty, i.e. there are no humans
return 'none'
for k in instances:
if k!='pred_smpl_params':
instances[k] = torch.from_numpy(np.array(instances[k]))
smpl_params = (instances['pred_smpl_params'])
for k in smpl_params:
smpl_params[k] = torch.from_numpy(np.array(smpl_params[k]))
total_num_instances = len(instances['bbox_xyxy'])
instances_converted = []
for ii in range(total_num_instances):
instances_converted.append(['human'] + (np.array(instances['bbox_xyxy'][ii]).flatten().tolist()) + ['global'] + (np.array(instances['pred_smpl_params']['global_orient'][ii]).flatten().tolist()) + ['pose'] + (instances['pose_tokenized'][ii].flatten().tolist()) + ['shape'] + (instances['pred_smpl_params']['betas'][ii].flatten().tolist()) + ['camera'] + (instances['pred_cam'][ii].flatten().tolist()))
return instances_converted
def humanposes_crop_and_resize(self, humanposes: List[Tuple], crop_coords: Tuple, orig_size: Tuple,):
"""Crop and resize human poses (and their bounding boxes)
"""
orig_height, orig_width = orig_size
top, left, h, w = crop_coords
humanposes_converted_resized = []
for instance in humanposes:
bbox_curr = instance[1:5]
bbox_curr = np.array(bbox_curr)
bbox_curr[0::2] = bbox_curr[0::2] / orig_width
bbox_curr[1::2] = bbox_curr[1::2] / orig_height
xmin, ymin, xmax, ymax = left, top, left + w, top + h
bbox_curr = A.bbox_crop(bbox_curr, x_min=xmin, y_min=ymin, x_max=xmax, y_max=ymax, rows=orig_height,
cols=orig_width)
bbox_curr = np.array(bbox_curr)
if np.all(bbox_curr[1::2]<0) or np.all(bbox_curr[0::2]<0): #bbox is out of range, remove it
continue
if np.all(bbox_curr[1::2]>1.0) or np.all(bbox_curr[0::2]>1.0): #bbox is out of range, remove it
continue
bbox_curr = np.clip(bbox_curr, a_min=0, a_max=1.)
instance[1:5] = bbox_curr
humanposes_converted_resized.append(instance)
# now return all instances, or none if there is no instance
if len(humanposes_converted_resized)>0:
pass
else: #no valid masks remains
return 'none'
humanpose_returned = humanposes_converted_resized
return humanpose_returned
def convert_humanposes_to_string(self, all_humanposes: List[Tuple]):
"""Convert humanposes to a string
range of global orientation: [-1, 1]
range of object pose: [-1, 1]
range of shape (betas): [-3, 3]
range of camera: [-1, 19]
"""
bins = self.coord_bins
instance_final_all = ''
for humanposes in all_humanposes:
human = humanposes[0]
bboxes = humanposes[1:5]
glob = humanposes[5]
global_orient = np.array(humanposes[6:15])
pose = humanposes[15]
pose_params = np.array(humanposes[16:24])
shape = humanposes[24]
shape_params = np.array(humanposes[25:35])
camera = humanposes[35]
camera_params = np.clip(np.array(humanposes[36:]), a_min=-1., a_max=19.)
bboxes_new = [
f"v0={round(bboxes[0] * (bins - 1))}",
f"v1={round(bboxes[1] * (bins - 1))}",
f"v2={round(bboxes[2] * (bins - 1))}",
f"v3={round(bboxes[3] * (bins - 1))}"]
global_orient = 499.5*global_orient
global_orient_new = []
for ii in range(len(global_orient)):
global_orient_curr = f"v0={round(global_orient[ii]+499.5)}"
global_orient_new.append(global_orient_curr)
pose_params_new = []
for ii in range(len(pose_params)):
if pose_params[ii]<512:
pose_params_curr = f"v0={round(pose_params[ii])}"
else:
pose_params_curr = f"v1={round(pose_params[ii] - 512)}"
pose_params_new.append(pose_params_curr)
shape_params = 166.5*shape_params
shape_params_new = []
for ii in range(len(shape_params)):
shape_params_curr = f"v0={round(shape_params[ii]+499.5)}"
shape_params_new.append(shape_params_curr)
camera_params = 49.95*camera_params
camera_params_new = []
for ii in range(len(camera_params)):
camera_params_curr = f"v0={round(camera_params[ii]+49.95)}"
camera_params_new.append(camera_params_curr)
#randomly shuffle everything except bbox part of the sequence
all_strings = [[pose]+pose_params_new, [glob] + global_orient_new, [camera] + camera_params_new, [shape] + shape_params_new ]
rand_perm = torch.randperm(4)
instance_final = [human] + bboxes_new + all_strings[rand_perm[0]] + all_strings[rand_perm[1]] + all_strings[rand_perm[2]] + all_strings[rand_perm[3]]
instance_final = ', '.join(instance_final)
instance_final = instance_final.replace(",", "")
instance_final_all = instance_final_all + instance_final + ' '
return instance_final_all
def load(self, path):
with open(path, 'r') as f:
sample = json.load(f)
return sample
def preprocess(self, sample):
instances = sample
instances = self.convert_humanpose_instance(instances, only_pose=self.only_pose)
return instances
def image_augment(self, humanposes: List[Tuple], crop_coords: Tuple, flip: bool, orig_size: Tuple, target_size: Tuple,
rand_aug_idx=None, resample_mode: str = None):
if humanposes=='none' or self.only_pose:
return humanposes
humanposes = self.humanposes_crop_and_resize(humanposes, crop_coords, orig_size)
return humanposes
def postprocess(self, humanposes):
if humanposes=='none' or self.only_pose:
return humanposes if not self.return_raw else []
if self.return_raw:
return humanposes
humanposes = self.convert_humanposes_to_string(humanposes)
return humanposes
class ColorPaletteTransform(AbstractTransform):
def __init__(self, coord_bins=1000, return_raw=False):
self.coord_bins = coord_bins
self.return_raw = return_raw
def convert_palette_instance(self, instances):
"""Convert colors to v0= v0= ...
"""
length = random.randint(1,7)
instances_converted = np.array(instances[0][str(length)]).flatten().tolist()
return instances_converted
def palette_hflip(self, palettes: List[Tuple], image_size: Tuple, flip: bool):
return palettes
def convert_palettes_to_string(self, all_palettes: List[Tuple]):
"""Convert palettes to a string
"""
colors = []
len_palettes = len(all_palettes)
colors.append(f"v1={round(len_palettes/3)}") # start with the length of the color palette to avoid confusion
for ii in range(len(all_palettes)):
color_new = f"v0={round(all_palettes[ii])}"
colors.append(color_new)
instance_final_all = colors
instance_final_all = ', '.join(instance_final_all)
instance_final_all = instance_final_all.replace(",", "")
return instance_final_all
def load(self, path):
with open(path, 'r') as f:
sample = json.load(f)
return sample
def preprocess(self, sample):
if self.return_raw:
return sample
instances = sample
instances = self.convert_palette_instance(instances)
return instances
def image_augment(self, palettes: List[Tuple], crop_coords: Tuple, flip: bool, orig_size: Tuple, target_size: Tuple,
rand_aug_idx=None, resample_mode: str = None):
return palettes
def postprocess(self, palettes):
if self.return_raw:
return palettes
palettes = self.convert_palettes_to_string(palettes)
return palettes
class SAMInstanceTokTransform(AbstractTransform):
def __init__(self, image_size=224, points_per_side=7, point_order='random'):
self.H, self.W = to_2tuple(image_size)
self.points_per_h, self.points_per_w = to_2tuple(points_per_side)
assert point_order in ['random', 'grid']
self.point_order = point_order
def get_query_points(self):
if self.point_order == 'grid':
# Create and cache grid query points
if not hasattr(self, 'grid_query_points'):
y, x = np.meshgrid(np.linspace(0, self.H, self.points_per_h + 2)[1:-1], np.linspace(0, self.W, self.points_per_w + 2)[1:-1])
grid = np.stack((x, y), axis=2).astype(np.int32)
self.grid_query_points = grid.reshape(-1, 2)
return self.grid_query_points
elif self.point_order == 'random':
# Randomly sample query points
y = np.random.randint(0, self.H, self.points_per_h)
x = np.random.randint(0, self.W, self.points_per_w)
return np.concatenate((x[:,None], y[:,None]), axis=1)
else:
raise ValueError(f"Query point order mode {self.point_order} is not supported.")
def get_target_tokens(self, sample, query_points):
instances_coords = [coords[0] for coords in sample['points']]
tokens = sample['token_ids']
bboxes = sample['bbox']
instance_tokens_per_qpoint = dict()
for point in query_points:
point = (int(point[0].item()), int(point[1].item()))
instance_tokens_per_qpoint[point] = []
for i, (coords, tok, bbox) in enumerate(zip(instances_coords, tokens, bboxes)):
# Calculate the distance from the query point to the instance
distance = cv2.pointPolygonTest(coords, point, measureDist=True)
# If the query point is inside the instance, add its corresponding token
if distance >= 0:
instance_tokens_per_qpoint[point].append((tok, bbox))
return instance_tokens_per_qpoint
def convert_target_tokens_to_string(self, target_tokens):
result_text = []
query_points = list(target_tokens.keys())
# Randomly shuffle query points order (mainly for grid order)
random.shuffle(query_points)
for point in query_points:
# Add query point coordinates to the string
result_text.append('point')
result_text.append(f'v0={point[1]}')
result_text.append(f'v1={point[0]}')
# Randomly shuffle the order of instance tokens per query point
random.shuffle(target_tokens[point])
if len(target_tokens[point]) == 0:
# If no instances tokens are found, add 'none' to the string
result_text.append('none')
else:
for tok, bbox in target_tokens[point]:
result_text.append(f'polygon')
# Add bounding box coordinates to the string
ymin, xmin, ymax, xmax = bbox.astype(np.int32)
result_text.extend([
f'v0={xmin}',
f'v1={ymin}',
f'v2={xmax}',
f'v3={ymax}',
])
# Add instance tokens ids to the string
for idx in tok.tolist():
if idx < 512:
result_text.append(f'v0={idx}')
else:
result_text.append(f'v1={idx - 512}')
return " ".join(result_text)
def load(self, path):
sample = np.load(path, allow_pickle=True)
return sample
def preprocess(self, sample):
for s in sample:
s['token_ids'] = s['token_ids'].astype(np.int32)
return sample
def image_augment(self, v, crop_coords: Tuple, flip: bool, orig_size: Tuple, target_size: Tuple,
rand_aug_idx: Optional[int], resample_mode: str = None):
if rand_aug_idx is None:
raise ValueError("Crop settings / augmentation index are missing but a pre-tokenized modality is being used")
v = v[rand_aug_idx]
return v
def postprocess(self, sample):
query_points = self.get_query_points()
target_tokens = self.get_target_tokens(sample, query_points)
final_string = self.convert_target_tokens_to_string(target_tokens)
return final_string
class CropSettingsTransform(AbstractTransform):
def load(self, path):
sample = np.load(path)
return sample
def preprocess(self, sample):
raise NotImplementedError("CropSettingsTransform does not support preprocessing")
def image_augment(self, val, crop_coords: Tuple, flip: bool, orig_size: Tuple, target_size: Tuple,
rand_aug_idx: Optional[int], resample_mode: str = None):
raise NotImplementedError("CropSettingsTransform is not meant to be used for image augmentation")
def postprocess(self, sample):
raise NotImplementedError("CropSettingsTransform does not support postprocessing")
class IdentityTransform(AbstractTransform):
def load(self, path):
raise NotImplementedError("IdentityTransform does not support loading")
def preprocess(self, sample):
return sample
def image_augment(self, val, crop_coords: Tuple, flip: bool, orig_size: Tuple, target_size: Tuple,
rand_aug_idx: Optional[int], resample_mode: str = None):
return val
def postprocess(self, sample):
return sample
class JSONTransform(AbstractTransform):
def load(self, path):
if path.endswith('.json'):
with open(path, 'r') as f:
sample = json.load(f)
elif path.endswith('.json.gz'):
with gzip.open(path, 'rb') as f:
sample = json.load(f)
return sample
def preprocess(self, sample):
return sample
def image_augment(self, val, crop_coords: Tuple, flip: bool, orig_size: Tuple, target_size: Tuple,
rand_aug_idx: Optional[int], resample_mode: str = None):
return val
def postprocess(self, sample):
return sample