Spaces:
Runtime error
Runtime error
# Copyright 2024 EPFL and Apple Inc. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
import torch | |
def convert_samples_to_mod_dict(samples, input_mod, target_mod, num_input_tokens, num_target_tokens): | |
"""Converts a sample (e.g. a batch of RGB images) to a mod dict that can be passed directly to FourM. | |
Assumes both the input modality and target modality are dense tasks. | |
""" | |
B = samples.shape[0] | |
device = samples.device | |
if input_mod == target_mod: | |
assert(num_input_tokens == num_target_tokens) | |
mod_dict = { | |
input_mod: { | |
'tensor': samples, | |
'input_mask': torch.zeros((B, num_input_tokens), dtype=torch.bool, device=device), | |
'target_mask': torch.zeros((B, num_target_tokens), dtype=torch.bool, device=device), | |
'decoder_attention_mask': torch.zeros((B, num_target_tokens), dtype=torch.int, device=device), | |
}, | |
} | |
mod_dict[input_mod]['decoder_attention_mask'][:, 0] = num_target_tokens | |
else: | |
mod_dict = { | |
input_mod: { | |
'tensor': samples, | |
'input_mask': torch.zeros((B, num_input_tokens), dtype=torch.bool, device=samples.device), | |
'target_mask': torch.ones((B, num_input_tokens), dtype=torch.bool, device=samples.device), | |
'decoder_attention_mask': torch.zeros((B, num_input_tokens), dtype=torch.int, device=samples.device), | |
}, | |
target_mod: { | |
'tensor': torch.zeros((B, num_target_tokens), dtype=torch.long, device=samples.device), | |
'input_mask': torch.ones((B, num_target_tokens), dtype=torch.bool, device=samples.device), | |
'target_mask': torch.zeros((B, num_target_tokens), dtype=torch.bool, device=samples.device), | |
'decoder_attention_mask': torch.ones((B, num_target_tokens), dtype=torch.int, device=samples.device), | |
}, | |
} | |
mod_dict[target_mod]['decoder_attention_mask'][:, 0] = num_target_tokens | |
return mod_dict | |