Spaces:
Runtime error
Runtime error
# -------------------------------------------------------- | |
# Based on the timm code base | |
# https://github.com/huggingface/pytorch-image-models | |
# -------------------------------------------------------- | |
""" Model Registry | |
Hacked together by / Copyright 2020 Ross Wightman | |
""" | |
import fnmatch | |
import re | |
import sys | |
from collections import defaultdict | |
from copy import deepcopy | |
__all__ = ['list_models', 'is_model', 'model_entrypoint', 'list_modules', 'is_model_in_modules', | |
'is_model_default_key', 'has_model_default_key', 'get_model_default_value', 'is_model_pretrained'] | |
_module_to_models = defaultdict(set) # dict of sets to check membership of model in module | |
_model_to_module = {} # mapping of model names to module names | |
_model_entrypoints = {} # mapping of model names to entrypoint fns | |
_model_has_pretrained = set() # set of model names that have pretrained weight url present | |
_model_default_cfgs = dict() # central repo for model default_cfgs | |
def register_model(fn): | |
# lookup containing module | |
mod = sys.modules[fn.__module__] | |
module_name_split = fn.__module__.split('.') | |
module_name = module_name_split[-1] if len(module_name_split) else '' | |
# add model to __all__ in module | |
model_name = fn.__name__ | |
if hasattr(mod, '__all__'): | |
mod.__all__.append(model_name) | |
else: | |
mod.__all__ = [model_name] | |
# add entries to registry dict/sets | |
_model_entrypoints[model_name] = fn | |
_model_to_module[model_name] = module_name | |
_module_to_models[module_name].add(model_name) | |
has_pretrained = False # check if model has a pretrained url to allow filtering on this | |
if hasattr(mod, 'default_cfgs') and model_name in mod.default_cfgs: | |
# this will catch all models that have entrypoint matching cfg key, but miss any aliasing | |
# entrypoints or non-matching combos | |
has_pretrained = 'url' in mod.default_cfgs[model_name] and 'http' in mod.default_cfgs[model_name]['url'] | |
_model_default_cfgs[model_name] = deepcopy(mod.default_cfgs[model_name]) | |
if has_pretrained: | |
_model_has_pretrained.add(model_name) | |
return fn | |
def _natural_key(string_): | |
return [int(s) if s.isdigit() else s for s in re.split(r'(\d+)', string_.lower())] | |
def list_models(filter='', module='', pretrained=False, exclude_filters='', name_matches_cfg=False): | |
""" Return list of available model names, sorted alphabetically | |
Args: | |
filter (str) - Wildcard filter string that works with fnmatch | |
module (str) - Limit model selection to a specific sub-module (ie 'gen_efficientnet') | |
pretrained (bool) - Include only models with pretrained weights if True | |
exclude_filters (str or list[str]) - Wildcard filters to exclude models after including them with filter | |
name_matches_cfg (bool) - Include only models w/ model_name matching default_cfg name (excludes some aliases) | |
Example: | |
model_list('gluon_resnet*') -- returns all models starting with 'gluon_resnet' | |
model_list('*resnext*, 'resnet') -- returns all models with 'resnext' in 'resnet' module | |
""" | |
if module: | |
all_models = list(_module_to_models[module]) | |
else: | |
all_models = _model_entrypoints.keys() | |
if filter: | |
models = [] | |
include_filters = filter if isinstance(filter, (tuple, list)) else [filter] | |
for f in include_filters: | |
include_models = fnmatch.filter(all_models, f) # include these models | |
if len(include_models): | |
models = set(models).union(include_models) | |
else: | |
models = all_models | |
if exclude_filters: | |
if not isinstance(exclude_filters, (tuple, list)): | |
exclude_filters = [exclude_filters] | |
for xf in exclude_filters: | |
exclude_models = fnmatch.filter(models, xf) # exclude these models | |
if len(exclude_models): | |
models = set(models).difference(exclude_models) | |
if pretrained: | |
models = _model_has_pretrained.intersection(models) | |
if name_matches_cfg: | |
models = set(_model_default_cfgs).intersection(models) | |
return list(sorted(models, key=_natural_key)) | |
def is_model(model_name): | |
""" Check if a model name exists | |
""" | |
return model_name in _model_entrypoints | |
def model_entrypoint(model_name): | |
"""Fetch a model entrypoint for specified model name | |
""" | |
return _model_entrypoints[model_name] | |
def list_modules(): | |
""" Return list of module names that contain models / model entrypoints | |
""" | |
modules = _module_to_models.keys() | |
return list(sorted(modules)) | |
def is_model_in_modules(model_name, module_names): | |
"""Check if a model exists within a subset of modules | |
Args: | |
model_name (str) - name of model to check | |
module_names (tuple, list, set) - names of modules to search in | |
""" | |
assert isinstance(module_names, (tuple, list, set)) | |
return any(model_name in _module_to_models[n] for n in module_names) | |
def has_model_default_key(model_name, cfg_key): | |
""" Query model default_cfgs for existence of a specific key. | |
""" | |
if model_name in _model_default_cfgs and cfg_key in _model_default_cfgs[model_name]: | |
return True | |
return False | |
def is_model_default_key(model_name, cfg_key): | |
""" Return truthy value for specified model default_cfg key, False if does not exist. | |
""" | |
if model_name in _model_default_cfgs and _model_default_cfgs[model_name].get(cfg_key, False): | |
return True | |
return False | |
def get_model_default_value(model_name, cfg_key): | |
""" Get a specific model default_cfg value by key. None if it doesn't exist. | |
""" | |
if model_name in _model_default_cfgs: | |
return _model_default_cfgs[model_name].get(cfg_key, None) | |
else: | |
return None | |
def is_model_pretrained(model_name): | |
return model_name in _model_has_pretrained | |