Spaces:
Runtime error
Runtime error
# Copyright 2024 EPFL and Apple Inc. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
""" | |
From: https://github.com/CompVis/taming-transformers | |
Stripped version of https://github.com/richzhang/PerceptualSimilarity/tree/master/models | |
""" | |
import torch | |
import torch.nn as nn | |
from torchvision import models | |
from collections import namedtuple | |
import os, hashlib | |
import requests | |
from tqdm import tqdm | |
URL_MAP = { | |
"vgg_lpips": "https://heibox.uni-heidelberg.de/f/607503859c864bc1b30b/?dl=1" | |
} | |
CKPT_MAP = { | |
"vgg_lpips": "vgg.pth" | |
} | |
MD5_MAP = { | |
"vgg_lpips": "d507d7349b931f0638a25a48a722f98a" | |
} | |
def download(url, local_path, chunk_size=1024): | |
os.makedirs(os.path.split(local_path)[0], exist_ok=True) | |
with requests.get(url, stream=True) as r: | |
total_size = int(r.headers.get("content-length", 0)) | |
with tqdm(total=total_size, unit="B", unit_scale=True) as pbar: | |
with open(local_path, "wb") as f: | |
for data in r.iter_content(chunk_size=chunk_size): | |
if data: | |
f.write(data) | |
pbar.update(chunk_size) | |
def md5_hash(path): | |
with open(path, "rb") as f: | |
content = f.read() | |
return hashlib.md5(content).hexdigest() | |
def get_ckpt_path(name, root, check=False): | |
assert name in URL_MAP | |
path = os.path.join(root, CKPT_MAP[name]) | |
if not os.path.exists(path) or (check and not md5_hash(path) == MD5_MAP[name]): | |
print("Downloading {} model from {} to {}".format(name, URL_MAP[name], path)) | |
download(URL_MAP[name], path) | |
md5 = md5_hash(path) | |
assert md5 == MD5_MAP[name], md5 | |
return path | |
class LPIPS(nn.Module): | |
# Learned perceptual metric | |
def __init__(self, use_dropout=True): | |
super().__init__() | |
self.scaling_layer = ScalingLayer() | |
self.chns = [64, 128, 256, 512, 512] # vg16 features | |
self.net = vgg16(pretrained=True, requires_grad=False) | |
self.lin0 = NetLinLayer(self.chns[0], use_dropout=use_dropout) | |
self.lin1 = NetLinLayer(self.chns[1], use_dropout=use_dropout) | |
self.lin2 = NetLinLayer(self.chns[2], use_dropout=use_dropout) | |
self.lin3 = NetLinLayer(self.chns[3], use_dropout=use_dropout) | |
self.lin4 = NetLinLayer(self.chns[4], use_dropout=use_dropout) | |
self.load_from_pretrained() | |
for param in self.parameters(): | |
param.requires_grad = False | |
def load_from_pretrained(self, name="vgg_lpips"): | |
ckpt = get_ckpt_path(name, "/tmp/lpips") | |
self.load_state_dict(torch.load(ckpt, map_location=torch.device("cpu")), strict=False) | |
print("loaded pretrained LPIPS loss from {}".format(ckpt)) | |
def from_pretrained(cls, name="vgg_lpips"): | |
if name != "vgg_lpips": | |
raise NotImplementedError | |
model = cls() | |
ckpt = get_ckpt_path(name) | |
model.load_state_dict(torch.load(ckpt, map_location=torch.device("cpu")), strict=False) | |
return model | |
def forward(self, input, target): | |
in0_input, in1_input = (self.scaling_layer(input), self.scaling_layer(target)) | |
outs0, outs1 = self.net(in0_input), self.net(in1_input) | |
feats0, feats1, diffs = {}, {}, {} | |
lins = [self.lin0, self.lin1, self.lin2, self.lin3, self.lin4] | |
for kk in range(len(self.chns)): | |
feats0[kk], feats1[kk] = normalize_tensor(outs0[kk]), normalize_tensor(outs1[kk]) | |
diffs[kk] = (feats0[kk] - feats1[kk]) ** 2 | |
res = [spatial_average(lins[kk].model(diffs[kk]), keepdim=True) for kk in range(len(self.chns))] | |
val = res[0] | |
for l in range(1, len(self.chns)): | |
val += res[l] | |
return val | |
class ScalingLayer(nn.Module): | |
def __init__(self): | |
super(ScalingLayer, self).__init__() | |
self.register_buffer('shift', torch.Tensor([-.030, -.088, -.188])[None, :, None, None]) | |
self.register_buffer('scale', torch.Tensor([.458, .448, .450])[None, :, None, None]) | |
def forward(self, inp): | |
return (inp - self.shift) / self.scale | |
class NetLinLayer(nn.Module): | |
""" A single linear layer which does a 1x1 conv """ | |
def __init__(self, chn_in, chn_out=1, use_dropout=False): | |
super(NetLinLayer, self).__init__() | |
layers = [nn.Dropout(), ] if (use_dropout) else [] | |
layers += [nn.Conv2d(chn_in, chn_out, 1, stride=1, padding=0, bias=False), ] | |
self.model = nn.Sequential(*layers) | |
class vgg16(torch.nn.Module): | |
def __init__(self, requires_grad=False, pretrained=True): | |
super(vgg16, self).__init__() | |
vgg_pretrained_features = models.vgg16(pretrained=pretrained).features | |
self.slice1 = torch.nn.Sequential() | |
self.slice2 = torch.nn.Sequential() | |
self.slice3 = torch.nn.Sequential() | |
self.slice4 = torch.nn.Sequential() | |
self.slice5 = torch.nn.Sequential() | |
self.N_slices = 5 | |
for x in range(4): | |
self.slice1.add_module(str(x), vgg_pretrained_features[x]) | |
for x in range(4, 9): | |
self.slice2.add_module(str(x), vgg_pretrained_features[x]) | |
for x in range(9, 16): | |
self.slice3.add_module(str(x), vgg_pretrained_features[x]) | |
for x in range(16, 23): | |
self.slice4.add_module(str(x), vgg_pretrained_features[x]) | |
for x in range(23, 30): | |
self.slice5.add_module(str(x), vgg_pretrained_features[x]) | |
if not requires_grad: | |
for param in self.parameters(): | |
param.requires_grad = False | |
def forward(self, X): | |
h = self.slice1(X) | |
h_relu1_2 = h | |
h = self.slice2(h) | |
h_relu2_2 = h | |
h = self.slice3(h) | |
h_relu3_3 = h | |
h = self.slice4(h) | |
h_relu4_3 = h | |
h = self.slice5(h) | |
h_relu5_3 = h | |
vgg_outputs = namedtuple("VggOutputs", ['relu1_2', 'relu2_2', 'relu3_3', 'relu4_3', 'relu5_3']) | |
out = vgg_outputs(h_relu1_2, h_relu2_2, h_relu3_3, h_relu4_3, h_relu5_3) | |
return out | |
def normalize_tensor(x,eps=1e-10): | |
norm_factor = torch.sqrt(torch.sum(x**2,dim=1,keepdim=True)) | |
return x/(norm_factor+eps) | |
def spatial_average(x, keepdim=True): | |
return x.mean([2,3],keepdim=keepdim) |