# Copyright 2024 EPFL and Apple Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import torch import pandas as pd import numpy as np from torch.utils.data import Dataset class PartiPromptsDataset(Dataset): """ Parti Prompts caption dataset. Args: text_tokenizer (tokenizers.Tokenizer): The tokenizer to use for encoding the captions. max_length (int): The maximum sequence length of the captions. parti_prompts_csv (str): The path to the Parti Prompts dataset. """ def __init__(self, text_tokenizer, max_length=128, parti_prompts_csv='fourm/utils/generation_datasets/PartiPrompts.tsv', parti_prompts_t5_embs=None, llm_embedder=None): self.text_tokenizer = text_tokenizer self.max_length = max_length self.parti_prompts = pd.read_csv(parti_prompts_csv, sep='\t') self.pad_id = text_tokenizer.token_to_id("[PAD]") self.eos_id = text_tokenizer.token_to_id("[EOS]") if parti_prompts_t5_embs is not None: # T5 Embeddings are saved as a numpy array, so we need to load it self.t5_embs = np.load(parti_prompts_t5_embs)['emb'] self.t5_masks = np.load(parti_prompts_t5_embs)['mask_valid'] self.llm_embedder = None elif llm_embedder is not None: self.t5_embs = None self.llm_embedder = llm_embedder else: self.t5_embs = None self.llm_embedder = None def __getitem__(self, index): text = self.parti_prompts.Prompt[index] seq_ids = self.text_tokenizer.encode(text).ids + [self.eos_id] tensor = torch.ones(self.max_length, dtype=torch.int) * self.pad_id tensor[:len(seq_ids)] = torch.tensor(seq_ids, dtype=torch.int) out = {} out['caption'] = {'tensor': tensor} if self.t5_embs is not None: t5_emb = torch.tensor(self.t5_embs[index], dtype=torch.float32) t5_emb = pad_or_truncate(t5_emb, self.max_length) t5_mask = torch.tensor(self.t5_masks[index], dtype=torch.bool) t5_mask = pad_or_truncate(t5_mask, self.max_length) ascii_tensor = text_to_tensor(text, max_length=self.max_length * 10) # Save ASCII as tensor out['t5_caption'] = { 'tensor': t5_emb, 'mask_valid': t5_mask, 'ascii_tensor': ascii_tensor, } elif self.llm_embedder is not None: t5_emb, _, t5_mask = self.llm_embedder.get_text_embeddings([text]) t5_emb = pad_or_truncate(t5_emb.squeeze(0), self.max_length) t5_mask = pad_or_truncate(t5_mask.bool().squeeze(0), self.max_length) ascii_tensor = text_to_tensor(text, max_length=self.max_length * 10) # Save ASCII as tensor out['t5_caption'] = { 'tensor': t5_emb, 'mask_valid': t5_mask, 'ascii_tensor': ascii_tensor, } return out def __len__(self): return len(self.parti_prompts) def pad_or_truncate(tensor, fixed_length, padding_value=0): current_length = tensor.shape[0] if current_length < fixed_length: # Calculate padding sizes for all dimensions, but only pad along dim=0 padding_sizes = [0] * 2 * len(tensor.shape) padding_sizes[1] = fixed_length - current_length return torch.nn.functional.pad(tensor, padding_sizes, 'constant', padding_value) else: return tensor[:fixed_length] def text_to_tensor(text, max_length=None): """Converts plaintext to a tensor with optional padding.""" ascii_values = [ord(c) for c in text] if max_length: while len(ascii_values) < max_length: ascii_values.append(0) # Using 0 as the padding value return torch.tensor(ascii_values, dtype=torch.int) def tensor_to_text(tensor): """Converts tensor back to plaintext. Assumes padding with zeros.""" ascii_values = tensor.tolist() return ''.join(chr(val) for val in ascii_values if val != 0)