# Copyright 2024 EPFL and Apple Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Helpers to train with 16-bit precision. """ import numpy as np import torch as th import torch.nn as nn from torch._utils import _flatten_dense_tensors, _unflatten_dense_tensors INITIAL_LOG_LOSS_SCALE = 20.0 def convert_module_to_f16(l): """ Convert primitive modules to float16. """ if isinstance(l, (nn.Conv1d, nn.Conv2d, nn.Conv3d)): l.weight.data = l.weight.data.half() if l.bias is not None: l.bias.data = l.bias.data.half() def convert_module_to_f32(l): """ Convert primitive modules to float32, undoing convert_module_to_f16(). """ if isinstance(l, (nn.Conv1d, nn.Conv2d, nn.Conv3d)): l.weight.data = l.weight.data.float() if l.bias is not None: l.bias.data = l.bias.data.float() def convert_module_to_bf16(l): """ Convert primitive modules to bfloat16, undoing convert_module_to_f16(). """ if isinstance(l, (nn.Conv1d, nn.Conv2d, nn.Conv3d)): l.weight.data = l.weight.data.bfloat16() if l.bias is not None: l.bias.data = l.bias.data.bfloat16() def make_master_params(param_groups_and_shapes): """ Copy model parameters into a (differently-shaped) list of full-precision parameters. """ master_params = [] for param_group, shape in param_groups_and_shapes: master_param = nn.Parameter( _flatten_dense_tensors( [param.detach().float() for (_, param) in param_group] ).view(shape) ) master_param.requires_grad = True master_params.append(master_param) return master_params def model_grads_to_master_grads(param_groups_and_shapes, master_params): """ Copy the gradients from the model parameters into the master parameters from make_master_params(). """ for master_param, (param_group, shape) in zip( master_params, param_groups_and_shapes ): master_param.grad = _flatten_dense_tensors( [param_grad_or_zeros(param) for (_, param) in param_group] ).view(shape) def master_params_to_model_params(param_groups_and_shapes, master_params): """ Copy the master parameter data back into the model parameters. """ # Without copying to a list, if a generator is passed, this will # silently not copy any parameters. for master_param, (param_group, _) in zip(master_params, param_groups_and_shapes): for (_, param), unflat_master_param in zip( param_group, unflatten_master_params(param_group, master_param.view(-1)) ): param.detach().copy_(unflat_master_param) def unflatten_master_params(param_group, master_param): return _unflatten_dense_tensors(master_param, [param for (_, param) in param_group]) def get_param_groups_and_shapes(named_model_params): named_model_params = list(named_model_params) scalar_vector_named_params = ( [(n, p) for (n, p) in named_model_params if p.ndim <= 1], (-1), ) matrix_named_params = ( [(n, p) for (n, p) in named_model_params if p.ndim > 1], (1, -1), ) return [scalar_vector_named_params, matrix_named_params] def master_params_to_state_dict( model, param_groups_and_shapes, master_params, use_fp16 ): if use_fp16: state_dict = model.state_dict() for master_param, (param_group, _) in zip( master_params, param_groups_and_shapes ): for (name, _), unflat_master_param in zip( param_group, unflatten_master_params(param_group, master_param.view(-1)) ): assert name in state_dict state_dict[name] = unflat_master_param else: state_dict = model.state_dict() for i, (name, _value) in enumerate(model.named_parameters()): assert name in state_dict state_dict[name] = master_params[i] return state_dict def state_dict_to_master_params(model, state_dict, use_fp16): if use_fp16: named_model_params = [ (name, state_dict[name]) for name, _ in model.named_parameters() ] param_groups_and_shapes = get_param_groups_and_shapes(named_model_params) master_params = make_master_params(param_groups_and_shapes) else: master_params = [state_dict[name] for name, _ in model.named_parameters()] return master_params def zero_master_grads(master_params): for param in master_params: param.grad = None def zero_grad(model_params): for param in model_params: # Taken from https://pytorch.org/docs/stable/_modules/torch/optim/optimizer.html#Optimizer.add_param_group if param.grad is not None: param.grad.detach_() param.grad.zero_() def param_grad_or_zeros(param): if param.grad is not None: return param.grad.data.detach() else: return th.zeros_like(param) class MixedPrecisionTrainer: def __init__( self, *, model, use_fp16=False, fp16_scale_growth=1e-3, initial_lg_loss_scale=INITIAL_LOG_LOSS_SCALE, ): self.model = model self.use_fp16 = use_fp16 self.fp16_scale_growth = fp16_scale_growth self.model_params = list(self.model.parameters()) self.master_params = self.model_params self.param_groups_and_shapes = None self.lg_loss_scale = initial_lg_loss_scale if self.use_fp16: self.param_groups_and_shapes = get_param_groups_and_shapes( self.model.named_parameters() ) self.master_params = make_master_params(self.param_groups_and_shapes) self.model.convert_to_fp16() def zero_grad(self): zero_grad(self.model_params) def backward(self, loss: th.Tensor): if self.use_fp16: loss_scale = 2 ** self.lg_loss_scale (loss * loss_scale).backward() else: loss.backward() def optimize(self, opt: th.optim.Optimizer): if self.use_fp16: return self._optimize_fp16(opt) else: return self._optimize_normal(opt) def _optimize_fp16(self, opt: th.optim.Optimizer): model_grads_to_master_grads(self.param_groups_and_shapes, self.master_params) grad_norm, param_norm = self._compute_norms(grad_scale=2 ** self.lg_loss_scale) if check_overflow(grad_norm): self.lg_loss_scale -= 1 zero_master_grads(self.master_params) return False for p in self.master_params: p.grad.mul_(1.0 / (2 ** self.lg_loss_scale)) opt.step() zero_master_grads(self.master_params) master_params_to_model_params(self.param_groups_and_shapes, self.master_params) self.lg_loss_scale += self.fp16_scale_growth return True def _optimize_normal(self, opt: th.optim.Optimizer): grad_norm, param_norm = self._compute_norms() opt.step() return True def _compute_norms(self, grad_scale=1.0): grad_norm = 0.0 param_norm = 0.0 for p in self.master_params: with th.no_grad(): param_norm += th.norm(p, p=2, dtype=th.float32).item() ** 2 if p.grad is not None: grad_norm += th.norm(p.grad, p=2, dtype=th.float32).item() ** 2 return np.sqrt(grad_norm) / grad_scale, np.sqrt(param_norm) def master_params_to_state_dict(self, master_params): return master_params_to_state_dict( self.model, self.param_groups_and_shapes, master_params, self.use_fp16 ) def state_dict_to_master_params(self, state_dict): return state_dict_to_master_params(self.model, state_dict, self.use_fp16) def check_overflow(value): return (value == float("inf")) or (value == -float("inf")) or (value != value)