# Copyright 2024 EPFL and Apple Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # -------------------------------------------------------- # Based on DINO code base # https://github.com/facebookresearch/dino # -------------------------------------------------------- import numpy as np import math def cosine_scheduler(base_value, final_value, epochs, niter_per_ep, warmup_epochs=0, start_warmup_value=0, warmup_steps=-1): warmup_schedule = np.array([]) warmup_iters = warmup_epochs * niter_per_ep if warmup_steps > 0: warmup_iters = warmup_steps print("Set warmup steps = %d" % warmup_iters) if warmup_epochs > 0 or warmup_steps > 0: warmup_schedule = np.linspace(start_warmup_value, base_value, warmup_iters) iters = np.arange(epochs * niter_per_ep - warmup_iters) schedule = np.array( [final_value + 0.5 * (base_value - final_value) * (1 + math.cos(math.pi * i / (len(iters)))) for i in iters]) schedule = np.concatenate((warmup_schedule, schedule)) assert len(schedule) == epochs * niter_per_ep return schedule def constant_scheduler(base_value, epochs, niter_per_ep): return base_value * np.ones(epochs*niter_per_ep) def inverse_sqrt_scheduler(base_value, final_value, epochs, niter_per_ep, warmup_epochs=0, start_warmup_value=0, warmup_steps=-1, cooldown_epochs=0, cooldown_steps=-1, timescale=10_000): warmup_iters = warmup_epochs * niter_per_ep if warmup_steps > 0: warmup_iters = warmup_steps print("Set warmup steps = %d" % warmup_iters) cooldown_iters = cooldown_epochs * niter_per_ep if cooldown_steps > 0: cooldown_iters = cooldown_steps print("Set cooldown steps = %d" % cooldown_iters) # Warmup schedule if warmup_epochs > 0 or warmup_steps > 0: warmup_schedule = np.linspace(start_warmup_value, base_value, warmup_iters) else: warmup_schedule = np.array([]) # Inverse square-root LR schedule iters = np.arange(epochs * niter_per_ep - warmup_iters - cooldown_iters) if base_value == final_value: schedule = base_value * np.ones(len(iters)) else: schedule = base_value / np.sqrt((iters + timescale) / timescale) # Cooldown schedule if cooldown_epochs > 0 or cooldown_steps > 0: cooldown_schedule = np.linspace(schedule[-1], final_value, cooldown_iters) else: cooldown_schedule = np.array([]) schedule = np.concatenate((warmup_schedule, schedule, cooldown_schedule)) assert len(schedule) == epochs * niter_per_ep return schedule