# -------------------------------------------------------- # Based on the timm code base # https://github.com/huggingface/pytorch-image-models # -------------------------------------------------------- """ Model Registry Hacked together by / Copyright 2020 Ross Wightman """ import fnmatch import re import sys from collections import defaultdict from copy import deepcopy __all__ = ['list_models', 'is_model', 'model_entrypoint', 'list_modules', 'is_model_in_modules', 'is_model_default_key', 'has_model_default_key', 'get_model_default_value', 'is_model_pretrained'] _module_to_models = defaultdict(set) # dict of sets to check membership of model in module _model_to_module = {} # mapping of model names to module names _model_entrypoints = {} # mapping of model names to entrypoint fns _model_has_pretrained = set() # set of model names that have pretrained weight url present _model_default_cfgs = dict() # central repo for model default_cfgs def register_model(fn): # lookup containing module mod = sys.modules[fn.__module__] module_name_split = fn.__module__.split('.') module_name = module_name_split[-1] if len(module_name_split) else '' # add model to __all__ in module model_name = fn.__name__ if hasattr(mod, '__all__'): mod.__all__.append(model_name) else: mod.__all__ = [model_name] # add entries to registry dict/sets _model_entrypoints[model_name] = fn _model_to_module[model_name] = module_name _module_to_models[module_name].add(model_name) has_pretrained = False # check if model has a pretrained url to allow filtering on this if hasattr(mod, 'default_cfgs') and model_name in mod.default_cfgs: # this will catch all models that have entrypoint matching cfg key, but miss any aliasing # entrypoints or non-matching combos has_pretrained = 'url' in mod.default_cfgs[model_name] and 'http' in mod.default_cfgs[model_name]['url'] _model_default_cfgs[model_name] = deepcopy(mod.default_cfgs[model_name]) if has_pretrained: _model_has_pretrained.add(model_name) return fn def _natural_key(string_): return [int(s) if s.isdigit() else s for s in re.split(r'(\d+)', string_.lower())] def list_models(filter='', module='', pretrained=False, exclude_filters='', name_matches_cfg=False): """ Return list of available model names, sorted alphabetically Args: filter (str) - Wildcard filter string that works with fnmatch module (str) - Limit model selection to a specific sub-module (ie 'gen_efficientnet') pretrained (bool) - Include only models with pretrained weights if True exclude_filters (str or list[str]) - Wildcard filters to exclude models after including them with filter name_matches_cfg (bool) - Include only models w/ model_name matching default_cfg name (excludes some aliases) Example: model_list('gluon_resnet*') -- returns all models starting with 'gluon_resnet' model_list('*resnext*, 'resnet') -- returns all models with 'resnext' in 'resnet' module """ if module: all_models = list(_module_to_models[module]) else: all_models = _model_entrypoints.keys() if filter: models = [] include_filters = filter if isinstance(filter, (tuple, list)) else [filter] for f in include_filters: include_models = fnmatch.filter(all_models, f) # include these models if len(include_models): models = set(models).union(include_models) else: models = all_models if exclude_filters: if not isinstance(exclude_filters, (tuple, list)): exclude_filters = [exclude_filters] for xf in exclude_filters: exclude_models = fnmatch.filter(models, xf) # exclude these models if len(exclude_models): models = set(models).difference(exclude_models) if pretrained: models = _model_has_pretrained.intersection(models) if name_matches_cfg: models = set(_model_default_cfgs).intersection(models) return list(sorted(models, key=_natural_key)) def is_model(model_name): """ Check if a model name exists """ return model_name in _model_entrypoints def model_entrypoint(model_name): """Fetch a model entrypoint for specified model name """ return _model_entrypoints[model_name] def list_modules(): """ Return list of module names that contain models / model entrypoints """ modules = _module_to_models.keys() return list(sorted(modules)) def is_model_in_modules(model_name, module_names): """Check if a model exists within a subset of modules Args: model_name (str) - name of model to check module_names (tuple, list, set) - names of modules to search in """ assert isinstance(module_names, (tuple, list, set)) return any(model_name in _module_to_models[n] for n in module_names) def has_model_default_key(model_name, cfg_key): """ Query model default_cfgs for existence of a specific key. """ if model_name in _model_default_cfgs and cfg_key in _model_default_cfgs[model_name]: return True return False def is_model_default_key(model_name, cfg_key): """ Return truthy value for specified model default_cfg key, False if does not exist. """ if model_name in _model_default_cfgs and _model_default_cfgs[model_name].get(cfg_key, False): return True return False def get_model_default_value(model_name, cfg_key): """ Get a specific model default_cfg value by key. None if it doesn't exist. """ if model_name in _model_default_cfgs: return _model_default_cfgs[model_name].get(cfg_key, None) else: return None def is_model_pretrained(model_name): return model_name in _model_has_pretrained