# Copyright 2024 EPFL and Apple Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # DISCLAIMER: This code is strongly influenced by https://github.com/lucidrains/vector-quantize-pytorch import torch from torch import nn, einsum import torch.nn.functional as F import torch.distributed as distributed from torch.cuda.amp import autocast from einops import rearrange, repeat from contextlib import contextmanager def exists(val): return val is not None def default(val, d): return val if exists(val) else d def noop(*args, **kwargs): pass def l2norm(t): return F.normalize(t, p = 2, dim = -1) def log(t, eps = 1e-20): return torch.log(t.clamp(min = eps)) def uniform_init(*shape): t = torch.empty(shape) nn.init.kaiming_uniform_(t) return t def gumbel_noise(t): noise = torch.zeros_like(t).uniform_(0, 1) return -log(-log(noise)) def gumbel_sample(t, temperature = 1., dim = -1): if temperature == 0: return t.argmax(dim = dim) return ((t / temperature) + gumbel_noise(t)).argmax(dim = dim) def ema_inplace(moving_avg, new, decay): moving_avg.data.mul_(decay).add_(new, alpha = (1 - decay)) def laplace_smoothing(x, n_categories, eps = 1e-5): return (x + eps) / (x.sum() + n_categories * eps) def sample_vectors(samples, num): num_samples, device = samples.shape[0], samples.device if num_samples >= num: indices = torch.randperm(num_samples, device = device)[:num] else: indices = torch.randint(0, num_samples, (num,), device = device) return samples[indices] def pad_shape(shape, size, dim = 0): return [size if i == dim else s for i, s in enumerate(shape)] def sample_multinomial(total_count, probs): device = probs.device probs = probs.cpu() total_count = probs.new_full((), total_count) remainder = probs.new_ones(()) sample = torch.empty_like(probs, dtype = torch.long) for i, p in enumerate(probs): s = torch.binomial(total_count, p / remainder) sample[i] = s total_count -= s remainder -= p return sample.to(device) def all_gather_sizes(x, dim): size = torch.tensor(x.shape[dim], dtype = torch.long, device = x.device) all_sizes = [torch.empty_like(size) for _ in range(distributed.get_world_size())] distributed.all_gather(all_sizes, size) return torch.stack(all_sizes) def all_gather_variably_sized(x, sizes, dim = 0): rank = distributed.get_rank() all_x = [] for i, size in enumerate(sizes): t = x if i == rank else x.new_empty(pad_shape(x.shape, size, dim)) distributed.broadcast(t, src = i, async_op = True) all_x.append(t) distributed.barrier() return all_x def sample_vectors_distributed(local_samples, num): rank = distributed.get_rank() all_num_samples = all_gather_sizes(local_samples, dim = 0) if rank == 0: samples_per_rank = sample_multinomial(num, all_num_samples / all_num_samples.sum()) else: samples_per_rank = torch.empty_like(all_num_samples) distributed.broadcast(samples_per_rank, src = 0) samples_per_rank = samples_per_rank.tolist() local_samples = sample_vectors(local_samples, samples_per_rank[rank]) all_samples = all_gather_variably_sized(local_samples, samples_per_rank, dim = 0) return torch.cat(all_samples, dim = 0) def add_noise(x, eps=1e-10): return x + torch.randn_like(x) * eps def add_noise_distributed(x, eps=1e-10): if distributed.get_rank() == 0: randn_noise = torch.randn_like(x) else: randn_noise = torch.empty_like(x) distributed.broadcast(randn_noise, src = 0) return x + randn_noise * eps def kmeans(samples, num_clusters, num_iters = 10, use_cosine_sim = False, sample_fn = sample_vectors, all_reduce_fn = noop): dim, dtype, device = samples.shape[-1], samples.dtype, samples.device means = sample_fn(samples, num_clusters) for _ in range(num_iters): if use_cosine_sim: dists = samples @ means.t() else: diffs = rearrange(samples, 'n d -> n () d') \ - rearrange(means, 'c d -> () c d') dists = -(diffs ** 2).sum(dim = -1) buckets = torch.argmax(dists, dim = -1) bins = torch.bincount(buckets, minlength = num_clusters) all_reduce_fn(bins) zero_mask = bins == 0 bins_min_clamped = bins.masked_fill(zero_mask, 1) new_means = buckets.new_zeros(num_clusters, dim, dtype = dtype) new_means.scatter_add_(0, repeat(buckets, 'n -> n d', d = dim), samples) new_means = new_means / bins_min_clamped[..., None] all_reduce_fn(new_means) if use_cosine_sim: new_means = l2norm(new_means) means = torch.where(zero_mask[..., None], means, new_means) return means, bins # regularization losses def orthgonal_loss_fn(t): # eq (2) from https://arxiv.org/abs/2112.00384 n = t.shape[0] normed_codes = l2norm(t) identity = torch.eye(n, device = t.device) cosine_sim = einsum('i d, j d -> i j', normed_codes, normed_codes) return ((cosine_sim - identity) ** 2).sum() / (n ** 2) # distance types class EuclideanCodebook(nn.Module): def __init__( self, dim, codebook_size, kmeans_init = False, kmeans_iters = 10, decay = 0.8, eps = 1e-5, threshold_ema_dead_code = 2, code_replacement_policy = 'batch_random', # batch_random or linde_buzo_gray use_ddp = False, learnable_codebook = False, sample_codebook_temp = 0 ): super().__init__() self.decay = decay init_fn = uniform_init if not kmeans_init else torch.zeros embed = init_fn(codebook_size, dim) self.codebook_size = codebook_size self.kmeans_iters = kmeans_iters self.eps = eps self.threshold_ema_dead_code = threshold_ema_dead_code self.code_replacement_policy = code_replacement_policy self.sample_codebook_temp = sample_codebook_temp self.sample_fn = sample_vectors_distributed if use_ddp else sample_vectors self.all_reduce_fn = distributed.all_reduce if use_ddp else noop self.add_noise_fn = add_noise_distributed if use_ddp else add_noise self.register_buffer('initted', torch.Tensor([not kmeans_init])) self.register_buffer('cluster_size', torch.zeros(codebook_size)) self.register_buffer('embed_avg', embed.clone()) self.learnable_codebook = learnable_codebook if learnable_codebook: self.embed = nn.Parameter(embed) else: self.register_buffer('embed', embed) @torch.jit.ignore def init_embed_(self, data): if self.initted: return embed, cluster_size = kmeans(data, self.codebook_size, self.kmeans_iters, sample_fn = self.sample_fn, all_reduce_fn = self.all_reduce_fn) self.embed.data.copy_(embed) self.embed_avg.data.copy_(embed.clone()) self.cluster_size.data.copy_(cluster_size) self.initted.data.copy_(torch.Tensor([True])) def replace_batch_random(self, samples, mask): samples = l2norm(samples) self.embed.data[mask] = self.sample_fn(samples, mask.sum().item()) def replace_linde_buzo_gray(self, mask): num_unused = mask.sum() most_used_idxs = self.cluster_size.argsort(descending=True)[:num_unused] most_used_codes = self.embed.data[most_used_idxs] self.embed.data[mask] = l2norm(self.add_noise_fn(most_used_codes)) def expire_codes_(self, batch_samples): if self.threshold_ema_dead_code == 0: return expired_codes = self.cluster_size < self.threshold_ema_dead_code if not torch.any(expired_codes): return if self.code_replacement_policy == 'batch_random': # Replace dead codes by random latents from encoder batch_samples = rearrange(batch_samples, '... d -> (...) d') self.replace_batch_random(batch_samples, mask = expired_codes) elif self.code_replacement_policy == 'linde_buzo_gray': # Replace dead codes by most used codes + some noise (Linde-Buzo-Gray splitting algorithm) self.replace_linde_buzo_gray(mask = expired_codes) else: raise ValueError(f'{self.code_replacement_policy} is not a valid dead code replacement strategy.') @autocast(enabled = False) def forward(self, x): x = x.float() shape, dtype = x.shape, x.dtype flatten = rearrange(x, '... d -> (...) d') self.init_embed_(flatten) embed = self.embed if not self.learnable_codebook else self.embed.detach() embed = self.embed.t() dist = -( flatten.pow(2).sum(1, keepdim=True) - 2 * flatten @ embed + embed.pow(2).sum(0, keepdim=True) ) embed_ind = gumbel_sample(dist, dim = -1, temperature = self.sample_codebook_temp) embed_onehot = F.one_hot(embed_ind, self.codebook_size).type(dtype) embed_ind = embed_ind.view(*shape[:-1]) quantize = F.embedding(embed_ind, self.embed) if self.training: cluster_size = embed_onehot.sum(0) self.all_reduce_fn(cluster_size) ema_inplace(self.cluster_size, cluster_size, self.decay) embed_sum = flatten.t() @ embed_onehot self.all_reduce_fn(embed_sum) ema_inplace(self.embed_avg, embed_sum.t(), self.decay) cluster_size = laplace_smoothing(self.cluster_size, self.codebook_size, self.eps) * self.cluster_size.sum() embed_normalized = self.embed_avg / cluster_size.unsqueeze(1) self.embed.data.copy_(embed_normalized) self.expire_codes_(x) return quantize, embed_ind class CosineSimCodebook(nn.Module): def __init__( self, dim, codebook_size, kmeans_init = False, kmeans_iters = 10, decay = 0.8, eps = 1e-5, threshold_ema_dead_code = 2, code_replacement_policy = 'batch_random', # batch_random or linde_buzo_gray use_ddp = False, learnable_codebook = False, sample_codebook_temp = 0. ): super().__init__() self.decay = decay if not kmeans_init: embed = l2norm(uniform_init(codebook_size, dim)) else: embed = torch.zeros(codebook_size, dim) self.codebook_size = codebook_size self.kmeans_iters = kmeans_iters self.eps = eps self.threshold_ema_dead_code = threshold_ema_dead_code self.code_replacement_policy = code_replacement_policy self.sample_codebook_temp = sample_codebook_temp self.sample_fn = sample_vectors_distributed if use_ddp else sample_vectors self.all_reduce_fn = distributed.all_reduce if use_ddp else noop self.add_noise_fn = add_noise_distributed if use_ddp else add_noise self.register_buffer('initted', torch.Tensor([not kmeans_init])) self.register_buffer('cluster_size', torch.zeros(codebook_size)) self.learnable_codebook = learnable_codebook if learnable_codebook: self.embed = nn.Parameter(embed) else: self.register_buffer('embed', embed) self.counter = 0 @torch.jit.ignore def init_embed_(self, data): if self.initted: return embed, cluster_size = kmeans(data, self.codebook_size, self.kmeans_iters, use_cosine_sim = True, sample_fn = self.sample_fn, all_reduce_fn = self.all_reduce_fn) self.embed.data.copy_(embed) self.cluster_size.data.copy_(cluster_size) self.initted.data.copy_(torch.Tensor([True])) def replace_batch_random(self, samples, mask): samples = l2norm(samples) self.embed.data[mask] = self.sample_fn(samples, mask.sum().item()) def replace_linde_buzo_gray(self, mask): num_unused = mask.sum() most_used_idxs = self.cluster_size.argsort(descending=True)[:num_unused] most_used_codes = self.embed.data[most_used_idxs] self.embed.data[mask] = l2norm(self.add_noise_fn(most_used_codes)) def expire_codes_(self, batch_samples): if self.threshold_ema_dead_code == 0: return expired_codes = self.cluster_size < self.threshold_ema_dead_code if not torch.any(expired_codes): return if self.code_replacement_policy == 'batch_random': # Replace dead codes by random latents from encoder batch_samples = rearrange(batch_samples, '... d -> (...) d') self.replace_batch_random(batch_samples, mask = expired_codes) elif self.code_replacement_policy == 'linde_buzo_gray': # Replace dead codes by most used codes + some noise (Linde-Buzo-Gray splitting algorithm) self.replace_linde_buzo_gray(mask = expired_codes) else: raise ValueError(f'{self.code_replacement_policy} is not a valid dead code replacement strategy.') @autocast(enabled = False) def forward(self, x): x = x.float() shape, dtype = x.shape, x.dtype flatten = rearrange(x, '... d -> (...) d') flatten = l2norm(flatten) self.init_embed_(flatten) embed = self.embed if not self.learnable_codebook else self.embed.detach() embed = l2norm(embed) dist = flatten @ embed.t() embed_ind = gumbel_sample(dist, dim = -1, temperature = self.sample_codebook_temp) embed_onehot = F.one_hot(embed_ind, self.codebook_size).type(dtype) embed_ind = embed_ind.view(*shape[:-1]) quantize = F.embedding(embed_ind, self.embed) if self.training: bins = embed_onehot.sum(0) self.all_reduce_fn(bins) ema_inplace(self.cluster_size, bins, self.decay) zero_mask = (bins == 0) bins = bins.masked_fill(zero_mask, 1.) embed_sum = flatten.t() @ embed_onehot self.all_reduce_fn(embed_sum) embed_normalized = (embed_sum / bins.unsqueeze(0)).t() embed_normalized = l2norm(embed_normalized) embed_normalized = torch.where(zero_mask[..., None], embed, embed_normalized) ema_inplace(self.embed, embed_normalized, self.decay) self.expire_codes_(x) return quantize, embed_ind # main class class VectorQuantize(nn.Module): def __init__( self, dim, codebook_size, codebook_dim = None, heads = 1, decay = 0.8, eps = 1e-5, kmeans_init = False, kmeans_iters = 10, use_cosine_sim = False, threshold_ema_dead_code = 0, code_replacement_policy = 'batch_random', # batch_random or linde_buzo_gray channel_last = False, accept_image_fmap = True, commitment_weight = 1., orthogonal_reg_weight = 0., orthogonal_reg_active_codes_only = False, orthogonal_reg_max_codes = None, sample_codebook_temp = 0., sync_codebook = False, norm_latents = False, ): super().__init__() self.heads = heads codebook_dim = default(codebook_dim, dim) codebook_input_dim = codebook_dim * heads requires_projection = codebook_input_dim != dim self.project_in = nn.Linear(dim, codebook_input_dim) if requires_projection else nn.Identity() self.project_out = nn.Linear(codebook_input_dim, dim) if requires_projection else nn.Identity() self.eps = eps self.commitment_weight = commitment_weight self.norm_latents = norm_latents has_codebook_orthogonal_loss = orthogonal_reg_weight > 0 self.orthogonal_reg_weight = orthogonal_reg_weight self.orthogonal_reg_active_codes_only = orthogonal_reg_active_codes_only self.orthogonal_reg_max_codes = orthogonal_reg_max_codes codebook_class = EuclideanCodebook if not use_cosine_sim else CosineSimCodebook self._codebook = codebook_class( dim = codebook_dim, codebook_size = codebook_size, kmeans_init = kmeans_init, kmeans_iters = kmeans_iters, decay = decay, eps = eps, threshold_ema_dead_code = threshold_ema_dead_code, code_replacement_policy = code_replacement_policy, use_ddp = sync_codebook, learnable_codebook = has_codebook_orthogonal_loss, sample_codebook_temp = sample_codebook_temp ) self.codebook_size = codebook_size self.accept_image_fmap = accept_image_fmap self.channel_last = channel_last @property def codebook(self): return self._codebook.embed def indices_to_embedding(self, indices): embedding = F.embedding(indices, self.codebook) embedding = rearrange(embedding, 'b h w c -> b c h w') return embedding def forward(self, x): shape, device, heads, is_multiheaded, codebook_size = x.shape, x.device, self.heads, self.heads > 1, self.codebook_size need_transpose = not self.channel_last and not self.accept_image_fmap if self.accept_image_fmap: height, width = x.shape[-2:] x = rearrange(x, 'b c h w -> b (h w) c') if need_transpose: x = rearrange(x, 'b d n -> b n d') x = self.project_in(x) if is_multiheaded: x = rearrange(x, 'b n (h d) -> (b h) n d', h = heads) if self.norm_latents: # If specified, normalize encoder latents for computing commitment loss x = l2norm(x) quantize, embed_ind = self._codebook(x) if self.training: quantize = x + (quantize - x).detach() loss = torch.tensor([0.], device = device, requires_grad = self.training) if self.training: if self.commitment_weight > 0: commit_loss = F.mse_loss(quantize.detach(), x) loss = loss + commit_loss * self.commitment_weight if self.orthogonal_reg_weight > 0: codebook = self.codebook if self.orthogonal_reg_active_codes_only: # only calculate orthogonal loss for the activated codes for this batch unique_code_ids = torch.unique(embed_ind) codebook = codebook[unique_code_ids] num_codes = codebook.shape[0] if exists(self.orthogonal_reg_max_codes) and num_codes > self.orthogonal_reg_max_codes: rand_ids = torch.randperm(num_codes, device = device)[:self.orthogonal_reg_max_codes] codebook = codebook[rand_ids] orthogonal_reg_loss = orthgonal_loss_fn(codebook) loss = loss + orthogonal_reg_loss * self.orthogonal_reg_weight if is_multiheaded: quantize = rearrange(quantize, '(b h) n d -> b n (h d)', h = heads) embed_ind = rearrange(embed_ind, '(b h) n -> b n h', h = heads) quantize = self.project_out(quantize) if need_transpose: quantize = rearrange(quantize, 'b n d -> b d n') if self.accept_image_fmap: quantize = rearrange(quantize, 'b (h w) c -> b c h w', h = height, w = width) embed_ind = rearrange(embed_ind, 'b (h w) ... -> b h w ...', h = height, w = width) if is_multiheaded: embed_ind = rearrange(embed_ind, 'b h w ... -> b ... h w') return quantize, loss, embed_ind