Spaces:
Sleeping
Sleeping
File size: 3,238 Bytes
a450bc7 0ca7583 a450bc7 de92ab7 a450bc7 de92ab7 0ca7583 de92ab7 0ca7583 de92ab7 0ca7583 de92ab7 0ca7583 de92ab7 0ca7583 de92ab7 a450bc7 de92ab7 0ca7583 de92ab7 0ca7583 de92ab7 0ca7583 de92ab7 0ca7583 de92ab7 a450bc7 de92ab7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 |
from gradio_pdf import PDF
from src.helper import *
import gradio as gr
from pathlib import Path
dir_ = Path(__file__).parent
with gr.Blocks() as ner:
gr.Markdown("# Sistem Ekstraksi Informasi Dokumen Putusan Hukum")
# List Label
keterangan_label = [
["VERN", "Nomor Putusan"],
["DEFN", "Nama Terdakwa"],
["CRIA", "Tindak Pidana"],
["ARTV", "Melanggar KUHP"],
["PENA", "Tuntutan Hukum"],
["PUNI", "Putusan Hukum"],
["TIMV", "Tanggal Putusan"],
["JUDP", "Hakim Ketua"],
["JUDG", "Hakim Anggota"],
["REGI", "Panitera"],
["PROS", "Penuntut Umum"],
["ADVO", "Pengacara"],
]
gr.Markdown("## Penjelasan Label")
gr.DataFrame(keterangan_label, headers=["Label", "Keterangan"], height=200)
gr.Markdown("## Uji Coba Model dengan Potongan Kalimat")
# Input Text
with gr.Row():
with gr.Column(scale=2):
text = gr.Textbox(label="Text")
model_text = gr.Dropdown(['IndoBERT (IndoLEM)', 'IndoBERT (IndoNLU)'], label='Model', value='IndoBERT (IndoLEM)', info='Pilih Model yang ingin digunakan *Default : IndoBERT (IndoLEM)')
button_text = gr.Button(value="Predict", variant='primary')
gr.ClearButton(text, value='Reset')
with gr.Column(scale=3):
output_text = gr.HighlightedText(label="Output Text")
button_text.click(fn=text_extraction, inputs=[text, model_text], outputs=output_text, api_name="text")
gr.Markdown("## Contoh Inputan Potongan Kalimat")
gr.Examples(
examples=[
["PUTUSAN . NOMOR : 187 / Pid . Sus / 2014 / PN . JKT . TIM . DEMI KEADILAN BERDASARKAN KETUHANAN YANG MAHA ESA . MENUNTUT : 1 Menyatakan terdakwa AGNES TRI AHADI Als AGNES telah terbukti secara sah dan meyakinkan bersalah melakukan tindak pidana Narkotika memiliki , menyimpan , menguasai , atau menyediakan Narkotika golongan I bukan tanaman sebagaimana didakwakan dalam dakwaan kedua yaitu melanggar ketentuan unsure pasal 112 ayat ( 1 ) UURI No . 35 tahun 2009 tentang Narkotika ;", "IndoBERT (IndoLEM)"],
["PUTUSAN . NOMOR : 187 / Pid . Sus / 2014 / PN . JKT . TIM", "IndoBERT (IndoNLU)"]
],
inputs=[text, model_text],
outputs=output_text,
fn=text_extraction,
)
gr.Markdown("## Ekstrak Entitas pada Dokumen Putusan Hukum")
# Input PDF
with gr.Row():
with gr.Column(scale=2):
doc = PDF(label="Document")
model_pdf = gr.Dropdown(['IndoBERT (IndoLEM)', 'IndoBERT (IndoNLU)'], label='Model',value='IndoBERT (IndoLEM)', info='Pilih Model yang ingin digunakan *Default : IndoBERT (IndoLEM)')
button_pdf = gr.Button(value="Extract", variant='primary')
gr.ClearButton(doc, value="Reset")
with gr.Column(scale=3):
output_pdf = gr.Textbox(label="Output PDF")
button_pdf.click(fn=pdf_extraction, inputs=[doc, model_pdf], outputs=output_pdf, api_name="pdf")
gr.Examples(
["428_pid.b_2021_pn_jkt.brt_20240529091234.pdf",
"1558_pid.b_2020_pn_jkt.brt_20240529091451.pdf",
"329_pid.b_2023_pn_jkt.brt_20240529090837.pdf",
"168_Pid.Sus_2023_PN_Bkl.pdf",
"169_Pid.Sus_2023_PN_Bkl.pdf",
"167_Pid.Sus_2023_PN_Bkl.pdf"],
inputs=[doc],
outputs=output_pdf,
fn=pdf_extraction,
)
if __name__ == "__main__":
ner.launch() |