arpit13 commited on
Commit
94c1933
·
verified ·
1 Parent(s): 5f09a7f

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +14 -5
app.py CHANGED
@@ -6,7 +6,7 @@ import numpy as np
6
  # Load the YOLOv5 model
7
  model = torch.hub.load('ultralytics/yolov5', 'yolov5s', pretrained=True)
8
 
9
- # Function to run inference on an image
10
  def run_inference(image):
11
  # Convert the image from PIL format to a format compatible with OpenCV
12
  image = np.array(image)
@@ -14,19 +14,28 @@ def run_inference(image):
14
  # Run YOLOv5 inference
15
  results = model(image)
16
 
 
 
 
 
 
 
17
  # Convert the annotated image from BGR to RGB for display
18
  annotated_image = results.render()[0]
19
  annotated_image = cv2.cvtColor(annotated_image, cv2.COLOR_BGR2RGB)
20
 
21
- return annotated_image
22
 
23
  # Create the Gradio interface
24
  interface = gr.Interface(
25
  fn=run_inference,
26
  inputs=gr.Image(type="pil"),
27
- outputs=gr.Image(type="pil"),
28
- title="YOLOv5 Object Detection",
29
- description="Upload an image to run YOLOv5 object detection and see the results."
 
 
 
30
  )
31
 
32
  # Launch the app
 
6
  # Load the YOLOv5 model
7
  model = torch.hub.load('ultralytics/yolov5', 'yolov5s', pretrained=True)
8
 
9
+ # Function to run inference on an image and count objects
10
  def run_inference(image):
11
  # Convert the image from PIL format to a format compatible with OpenCV
12
  image = np.array(image)
 
14
  # Run YOLOv5 inference
15
  results = model(image)
16
 
17
+ # Extract detection results
18
+ detections = results.pandas().xyxy[0]
19
+
20
+ # Count objects by category
21
+ object_counts = detections['name'].value_counts().to_dict()
22
+
23
  # Convert the annotated image from BGR to RGB for display
24
  annotated_image = results.render()[0]
25
  annotated_image = cv2.cvtColor(annotated_image, cv2.COLOR_BGR2RGB)
26
 
27
+ return annotated_image, object_counts
28
 
29
  # Create the Gradio interface
30
  interface = gr.Interface(
31
  fn=run_inference,
32
  inputs=gr.Image(type="pil"),
33
+ outputs=[
34
+ gr.Image(type="pil"),
35
+ gr.JSON(label="Object Counts") # Add JSON output for object counts
36
+ ],
37
+ title="YOLOv5 Object Detection with Counts",
38
+ description="Upload an image to run YOLOv5 object detection, see the annotated results, and view the count of detected objects by category."
39
  )
40
 
41
  # Launch the app