arpit13 commited on
Commit
9bacbe9
·
verified ·
1 Parent(s): 55c31d0

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +6 -7
app.py CHANGED
@@ -1,10 +1,10 @@
1
  import gradio as gr
2
  import cv2
3
- import torch
4
  import numpy as np
 
5
 
6
  # Load the YOLOv5 model
7
- model = torch.hub.load('ultralytics/yolov5', 'yolov5s', pretrained=True)
8
 
9
  # Function to run inference on an image
10
  def run_inference(image):
@@ -12,11 +12,10 @@ def run_inference(image):
12
  image = np.array(image)
13
 
14
  # Run YOLOv5 inference
15
- results = model(image)
16
 
17
- # Convert the annotated image from BGR to RGB for display
18
- annotated_image = results.render()[0]
19
- annotated_image = cv2.cvtColor(annotated_image, cv2.COLOR_BGR2RGB)
20
 
21
  return annotated_image
22
 
@@ -24,7 +23,7 @@ def run_inference(image):
24
  interface = gr.Interface(
25
  fn=run_inference,
26
  inputs=gr.Image(type="pil"),
27
- outputs=gr.Image(type="pil"),
28
  title="YOLOv5 Object Detection",
29
  description="Upload an image to run YOLOv5 object detection and see the results."
30
  )
 
1
  import gradio as gr
2
  import cv2
 
3
  import numpy as np
4
+ from ultralytics import YOLO # Import YOLO from ultralytics
5
 
6
  # Load the YOLOv5 model
7
+ model = YOLO('yolov5s') # Use the YOLOv5s pre-trained model
8
 
9
  # Function to run inference on an image
10
  def run_inference(image):
 
12
  image = np.array(image)
13
 
14
  # Run YOLOv5 inference
15
+ results = model.predict(source=image, save=False, conf=0.25, stream=False)
16
 
17
+ # Annotate the image with detected objects
18
+ annotated_image = results[0].plot() # Use YOLO's built-in plotting function
 
19
 
20
  return annotated_image
21
 
 
23
  interface = gr.Interface(
24
  fn=run_inference,
25
  inputs=gr.Image(type="pil"),
26
+ outputs=gr.Image(type="numpy"),
27
  title="YOLOv5 Object Detection",
28
  description="Upload an image to run YOLOv5 object detection and see the results."
29
  )