File size: 3,948 Bytes
8df15f7
3ba6e71
4fbdca3
3ba6e71
72f9a72
b9a3331
3ba6e71
 
46bfe87
b9a3331
 
 
 
 
 
 
 
 
 
 
8df15f7
 
 
 
b9a3331
 
8df15f7
 
 
 
 
72f9a72
46bfe87
b9a3331
 
4bde0d5
b9a3331
0a7bc28
4bde0d5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b9a3331
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
import gradio as gr
import openai
import os

# Set OpenAI API Key
openai.api_key = os.getenv("TRY_NEW_THINGS")
openai.api_base = "https://api.groq.com/openai/v1"

# Function to get response from GROQ API
def get_groq_response(message, category):
    system_message = ""
    if category == "Stress Management":
        system_message = "Provide soothing advice and tips to help the user manage stress. Be calm and empathetic."
    elif category == "Career Advice":
        system_message = "Provide professional and constructive career advice. Be encouraging and helpful."
    elif category == "General":
        system_message = "Provide general conversation. Be friendly and easygoing."
    elif category == "Friendly Buddy":
        system_message = "Respond as a supportive and fun friend. Be informal and light-hearted."

    try:
        response = openai.ChatCompletion.create(
            model="llama-3.1-70b-versatile",
            messages=[
                {"role": "system", "content": system_message},
                {"role": "user", "content": message}
            ]
        )
        return response.choices[0].message["content"]
    except Exception as e:
        return f"Error: {str(e)}"

# Chatbot function
def chatbot(user_input, category, history=[]):
    bot_response = get_groq_response(user_input, category)
    history.append((f"You: {user_input}", f"Bot: {bot_response}"))
    return history, history

# Gradio Interface with enhanced styling
chat_interface = gr.Blocks(css="""
body {
    font-family: 'Poppins', sans-serif;
    background: linear-gradient(120deg, #ff9a9e, #fad0c4, #a1c4fd);
    animation: gradientBG 10s ease infinite;
    margin: 0;
    padding: 0;
    color: #333;
}

@keyframes gradientBG {
    0% { background-position: 0% 50%; }
    50% { background-position: 100% 50%; }
    100% { background-position: 0% 50%; }
}

button {
    background: linear-gradient(90deg, #6a11cb, #2575fc);
    color: white;
    padding: 0.8rem 1.5rem;
    font-size: 1rem;
    font-weight: bold;
    border-radius: 20px;
    border: none;
    cursor: pointer;
    transition: transform 0.2s ease, background 0.2s ease;
}

button:hover {
    background: linear-gradient(90deg, #2575fc, #6a11cb);
    transform: scale(1.1);
}

header {
    text-align: center;
    margin-bottom: 20px;
    padding: 10px;
    border-radius: 15px;
    background: linear-gradient(90deg, #ff758c, #ff7eb3);
    color: white;
    box-shadow: 0 4px 15px rgba(0, 0, 0, 0.2);
}

.chatbot-output {
    border: 2px solid #ff7eb3;
    background: rgba(255, 255, 255, 0.8);
    border-radius: 15px;
    padding: 15px;
    box-shadow: 0 4px 10px rgba(0, 0, 0, 0.1);
    max-height: 300px;
    overflow-y: auto;
}
""")

with chat_interface:
    with gr.Row():
        gr.Markdown("<h1 style='text-align:center;'>🌟 Vibrant Personal Assistant Chatbot 🌈</h1>")
    with gr.Row():
        gr.Markdown("<p style='text-align:center;'>Select a category and type your message to get tailored responses.</p>")
    with gr.Row():
        user_input = gr.Textbox(label="Your Message", placeholder="Type something...", lines=2)
        category_dropdown = gr.Dropdown(
            choices=["Stress Management", "Career Advice", "General", "Friendly Buddy"],
            label="Choose Chat Category"
        )
    with gr.Row():
        send_button = gr.Button("Send")
    with gr.Row():
        chatbot_output = gr.Chatbot(label="Chat History", css_class="chatbot-output")
    
    # Add functionality to handle interactions
    def handle_chat(user_input, category, history):
        if not user_input.strip():
            return history, history
        updated_history, _ = chatbot(user_input, category, history)
        return updated_history, updated_history
    
    send_button.click(
        handle_chat,
        inputs=[user_input, category_dropdown, chatbot_output],
        outputs=[chatbot_output, chatbot_output]
    )

chat_interface.launch()