Spaces:
Sleeping
Sleeping
File size: 4,192 Bytes
8df15f7 3ba6e71 4fbdca3 3ba6e71 72f9a72 b9a3331 3ba6e71 46bfe87 b9a3331 aeffc71 508fcad 8df15f7 b9a3331 8df15f7 72f9a72 46bfe87 b9a3331 6434192 0a7bc28 508fcad 4bde0d5 508fcad 0325f41 508fcad 4bde0d5 508fcad 4bde0d5 508fcad 4bde0d5 508fcad d32fa9d 508fcad d32fa9d 508fcad d32fa9d 508fcad d32fa9d 508fcad 6434192 f063c08 6434192 aaca04e bf58fec d32fa9d f063c08 508fcad d32fa9d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 |
import gradio as gr
import openai
import os
# Set OpenAI API Key
openai.api_key = os.getenv("TRY_NEW_THINGS")
openai.api_base = "https://api.groq.com/openai/v1"
# Function to get response from GROQ API
def get_groq_response(message, category):
# Define system message based on category
system_messages = {
"Study Tips": "Provide effective study strategies, time management advice, and tips for staying organized and focused.",
"Exam Preparation": "Offer tips for preparing for exams, managing anxiety, and optimizing performance on test day.",
"Project Guidance": "Provide advice on how to tackle academic projects, group assignments, and presentations effectively.",
"Stress Management": "Offer calming techniques and advice to handle stress effectively.",
# (Continue with all other categories...)
"Friendly Buddy": "Respond as a supportive and fun friend. Be informal, cheerful, and light-hearted."
}
system_message = system_messages.get(category, "Respond appropriately to the user's input.")
try:
response = openai.ChatCompletion.create(
model="llama-3.1-70b-versatile",
messages=[
{"role": "system", "content": system_message},
{"role": "user", "content": message}
]
)
return response.choices[0].message["content"]
except Exception as e:
return f"Error: {str(e)}"
# Chatbot function
def chatbot(user_input, category, history=[]):
bot_response = get_groq_response(user_input, category)
history.append((f"You: {user_input}", f"Bot: {bot_response}"))
return history, history
# Gradio Interface with grouped categories
categories = {
"Academic Support": [
"Study Tips", "Exam Preparation", "Project Guidance", "Time Management", "Building Confidence"
],
"Mental & Physical Wellness": [
"Stress Management", "Motivation & Focus", "Mental Health", "Physical Health", "Work-Life Balance"
],
"Career & Financial": [
"Networking & Career Building", "Finding Part-Time Jobs", "Scholarships & Financial Aid",
"Resume Building", "Interview Preparation", "Budgeting Tips", "Skill Development"
],
"Social & Personal Growth": [
"Friendship & Social Skills", "Exploring New Hobbies", "Clubs & Extracurriculars", "Creative Projects"
],
"Fun & Miscellaneous": [
"Funny", "Flirty", "Scary", "Business Mind", "Extrovert", "Friendly Buddy"
]
}
def get_subcategories(main_category):
return categories.get(main_category, [])
with gr.Blocks(css="""
/* Add custom CSS here */
""") as chat_interface:
with gr.Row():
gr.Markdown("<h1 style='text-align:center;'>π Vibrant Personal Assistant Chatbot π</h1>")
with gr.Row():
gr.Markdown("<p style='text-align:center;'>Select a category and type your message to get tailored responses.</p>")
with gr.Row():
main_category = gr.Radio(
label="Main Category",
choices=list(categories.keys()),
value="Academic Support"
)
sub_category = gr.Dropdown(
label="Subcategory",
choices=get_subcategories("Academic Support")
)
def update_subcategories(main_category):
return gr.Dropdown.update(choices=get_subcategories(main_category), value=None)
main_category.change(update_subcategories, inputs=main_category, outputs=sub_category)
with gr.Row():
user_input = gr.Textbox(label="Your Message", placeholder="Type something...", lines=2)
send_button = gr.Button("Send")
with gr.Row():
chatbot_output = gr.Chatbot(label="Chat History")
# Add functionality to handle interactions
def handle_chat(user_input, category, history):
if not user_input.strip():
return history, history
updated_history, _ = chatbot(user_input, category, history)
return updated_history, updated_history
send_button.click(
handle_chat,
inputs=[user_input, sub_category, chatbot_output],
outputs=[chatbot_output, chatbot_output]
)
chat_interface.launch()
|