Encourage-AI / app.py
arpit13's picture
Update app.py
46bfe87 verified
raw
history blame
4.23 kB
import gradio as gr
import openai
# Set OpenAI API Key
openai.api_key = "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"
openai.api_base = "https://api.groq.com/openai/v1"
# Dictionary to store categorized chats
saved_chats = {
"Stress Management": [],
"Career Advice": [],
"General": [],
"Suggestions": []
}
# Function to get response from GROQ API
def get_groq_response(message):
try:
response = openai.ChatCompletion.create(
model="llama-3.1-70b-versatile",
messages=[
{"role": "user", "content": message},
{"role": "system", "content": "You will talk like a Motivational Speaker to help people come out of stress."}
]
)
return response.choices[0].message["content"]
except Exception as e:
return f"Error: {str(e)}"
# Function to classify messages based on the topic
def classify_message(user_message, bot_response):
if "stress" in user_message.lower():
saved_chats["Stress Management"].append((user_message, bot_response))
return "Stress Management"
elif "career" in user_message.lower():
saved_chats["Career Advice"].append((user_message, bot_response))
return "Career Advice"
elif "suggestions" in user_message.lower():
saved_chats["Suggestions"].append((user_message, bot_response))
return "Suggestions"
else:
saved_chats["General"].append((user_message, bot_response))
return "General"
# Chatbot function
def chatbot(user_input, history=[]):
bot_response = get_groq_response(user_input)
topic = classify_message(user_input, bot_response)
history.append((f"({topic}) You: {user_input}", f"Motivator Bot: {bot_response}"))
return history, saved_chats
# Function to display saved chats
def display_saved_chats():
def format_chats(category):
return "\n".join([f"**You**: {u}\n**Bot**: {b}" for u, b in saved_chats[category]]) or "No messages yet."
return (
format_chats("Stress Management"),
format_chats("Career Advice"),
format_chats("General"),
format_chats("Suggestions")
)
# Gradio Interface setup
chat_interface = gr.Blocks(css="""
body {
font-family: 'Poppins', sans-serif;
background: linear-gradient(45deg, #ff9a9e, #fad0c4, #fbc2eb, #a1c4fd, #c2e9fb);
background-size: 400% 400%;
animation: gradientBG 10s ease infinite;
margin: 0;
padding: 0;
color: #333;
}
@keyframes gradientBG {
0% { background-position: 0% 50%; }
50% { background-position: 100% 50%; }
100% { background-position: 0% 50%; }
}
header, footer {
text-align: center;
background: linear-gradient(90deg, #ff758c, #ff7eb3);
color: white;
padding: 1rem;
border-radius: 15px;
margin-bottom: 1rem;
box-shadow: 0px 4px 15px rgba(0, 0, 0, 0.2);
}
""")
with chat_interface:
with gr.Row():
gr.Markdown("<h1 style='text-align:center;'>🌈 Vibrant Motivational Chatbot</h1>")
with gr.Row():
user_input = gr.Textbox(label="Your Message", placeholder="Type something...")
send_button = gr.Button("Send")
with gr.Row():
chatbot_output = gr.Chatbot(label="Chat History")
with gr.Row():
with gr.Column():
stress_display = gr.Textbox(label="Stress Management", interactive=False, lines=10)
with gr.Column():
career_display = gr.Textbox(label="Career Advice", interactive=False, lines=10)
with gr.Column():
general_display = gr.Textbox(label="General", interactive=False, lines=10)
with gr.Column():
suggestions_display = gr.Textbox(label="Suggestions", interactive=False, lines=10)
def handle_interaction(user_input, history):
if not user_input.strip():
return history, *display_saved_chats()
updated_history, _ = chatbot(user_input, history)
return updated_history, *display_saved_chats()
send_button.click(
fn=handle_interaction,
inputs=[user_input, chatbot_output],
outputs=[chatbot_output, stress_display, career_display, general_display, suggestions_display]
)
chat_interface.launch()