Encourage-AI / app.py
arpit13's picture
Update app.py
fac9e90 verified
raw
history blame
4.86 kB
import gradio as gr
import openai
import os
# Set OpenAI API Key
openai.api_key = os.getenv("TRY_NEW_THINGS")
openai.api_base = "https://api.groq.com/openai/v1"
# Function to get response from GROQ API
def get_groq_response(message, category):
system_message = ""
if category == "Stress Management":
system_message = "Provide soothing advice and tips to help the user manage stress. Be calm and empathetic."
elif category == "Career Advice":
system_message = "Provide professional and constructive career advice. Be encouraging and helpful."
elif category == "General":
system_message = "Provide general conversation. Be friendly and easygoing."
elif category == "Friendly Buddy":
system_message = "Respond as a supportive and fun friend. Be informal and light-hearted."
try:
response = openai.ChatCompletion.create(
model="llama-3.1-70b-versatile",
messages=[
{"role": "system", "content": system_message},
{"role": "user", "content": message}
]
)
return response.choices[0].message["content"]
except Exception as e:
return f"Error: {str(e)}"
# Chatbot function
def chatbot(user_input, category, history=[]):
bot_response = get_groq_response(user_input, category)
history.append({"role": "user", "content": user_input})
history.append({"role": "assistant", "content": bot_response})
return history, bot_response
# Gradio Interface with enhanced styling
chat_interface = gr.Blocks(css="""
body {
font-family: 'Poppins', sans-serif;
background: linear-gradient(120deg, #ff9a9e, #fad0c4, #a1c4fd);
animation: gradientBG 10s ease infinite;
margin: 0;
padding: 0;
color: #333;
}
@keyframes gradientBG {
0% { background-position: 0% 50%; }
50% { background-position: 100% 50%; }
100% { background-position: 0% 50%; }
}
button {
background: linear-gradient(90deg, #a1c4fd, #c2e9fb);
color: #333;
padding: 0.8rem 1.5rem;
font-size: 1rem;
font-weight: bold;
border-radius: 20px;
border: none;
cursor: pointer;
transition: transform 0.2s ease, background 0.2s ease;
}
button:hover {
background: linear-gradient(90deg, #c2e9fb, #a1c4fd);
transform: scale(1.05);
}
header {
text-align: center;
margin-bottom: 20px;
padding: 10px;
border-radius: 15px;
background: linear-gradient(90deg, #ff758c, #ff7eb3);
color: white;
box-shadow: 0 4px 15px rgba(0, 0, 0, 0.2);
}
.chat-container {
border: 2px solid #ff7eb3;
background: rgba(255, 255, 255, 0.8);
border-radius: 15px;
padding: 15px;
box-shadow: 0 4px 10px rgba(0, 0, 0, 0.1);
max-height: 300px;
overflow-y: auto;
}
""")
with chat_interface:
with gr.Row():
gr.Markdown("<h1 style='text-align:center;'>🌟 Vibrant Personal Assistant Chatbot 🌈</h1>")
with gr.Row():
gr.Markdown("<p style='text-align:center;'>Select a category and type your message to get tailored responses.</p>")
with gr.Row():
user_input = gr.Textbox(label="Your Message", placeholder="Type something...", lines=2)
category_dropdown = gr.Dropdown(
choices=["Stress Management", "Career Advice", "General", "Friendly Buddy"],
label="Choose Chat Category"
)
with gr.Row():
send_button = gr.Button("Send")
with gr.Row():
chatbot_output = gr.Chatbot(label="Chat History", type="messages")
with gr.Row():
copy_button = gr.Button("Copy Response")
with gr.Row():
copy_message = gr.HTML("") # To display the confirmation message
# Add functionality to handle interactions
def handle_chat(user_input, category, history):
if not user_input.strip():
return history, history
updated_history, bot_response = chatbot(user_input, category, history)
return updated_history, updated_history
def handle_copy(last_bot_response):
# Copy the last bot response to clipboard using the JavaScript in Gradio.
return gr.HTML(f"""
<script>
const copyText = '{last_bot_response}';
navigator.clipboard.writeText(copyText)
.then(() => {{
alert('Response copied to clipboard!');
}})
.catch(() => {{
alert('Failed to copy!');
}});
</script>
"""), "Response copied to clipboard!"
send_button.click(
handle_chat,
inputs=[user_input, category_dropdown, chatbot_output],
outputs=[chatbot_output, chatbot_output]
)
copy_button.click(
handle_copy,
inputs=[chatbot_output],
outputs=[copy_message] # Display the copy confirmation message
)
chat_interface.launch()