import gradio as gr import openai import os # Set OpenAI API Key openai.api_key = os.getenv("TRY_NEW_THINGS") openai.api_base = "https://api.groq.com/openai/v1" # Function to get response from GROQ API def get_groq_response(message, category): system_messages = { "Study Tips": "Provide effective study strategies, time management advice, and tips for staying organized and focused.", "Exam Preparation": "Offer tips for preparing for exams, managing anxiety, and optimizing performance on test day.", "Project Guidance": "Provide advice on how to tackle academic projects, group assignments, and presentations effectively.", "Stress Management": "Offer calming techniques and advice to handle stress effectively.", "Friendly Buddy": "Respond as a supportive and fun friend. Be informal, cheerful, and light-hearted." } system_message = system_messages.get(category, "Respond appropriately to the user's input.") try: response = openai.ChatCompletion.create( model="llama-3.1-70b-versatile", messages=[ {"role": "system", "content": system_message}, {"role": "user", "content": message} ] ) return response.choices[0].message["content"] except Exception as e: return f"Error: {str(e)}" # Chatbot function def chatbot(user_input, category, history=[]): bot_response = get_groq_response(user_input, category) history.append((f"You: {user_input}", f"Bot: {bot_response}")) return history, history # Categories grouped into main and subcategories categories = { "Academic Support": [ "Study Tips", "Exam Preparation", "Project Guidance", "Time Management", "Building Confidence" ], "Mental & Physical Wellness": [ "Stress Management", "Motivation & Focus", "Mental Health", "Physical Health", "Work-Life Balance" ], "Career & Financial": [ "Networking & Career Building", "Finding Part-Time Jobs", "Scholarships & Financial Aid", "Resume Building", "Interview Preparation", "Budgeting Tips", "Skill Development" ], "Social & Personal Growth": [ "Friendship & Social Skills", "Exploring New Hobbies", "Clubs & Extracurriculars", "Creative Projects" ], "Fun & Miscellaneous": [ "Funny", "Flirty", "Scary", "Business Mind", "Extrovert", "Friendly Buddy" ] } # Gradio Interface with grouped categories with gr.Blocks() as chat_interface: with gr.Row(): gr.Markdown("

🌟 Vibrant Personal Assistant Chatbot 🌈

") with gr.Row(): gr.Markdown("

Select a category and type your message to get tailored responses.

") with gr.Row(): main_category = gr.Radio( label="Main Category", choices=list(categories.keys()), value="Academic Support" ) sub_category = gr.Dropdown( label="Subcategory", choices=categories["Academic Support"], value="Study Tips" ) def update_subcategories(selected_main_category): """Update the subcategory dropdown based on the main category.""" new_subcategories = categories.get(selected_main_category, []) return gr.Dropdown.update(choices=new_subcategories, value=new_subcategories[0] if new_subcategories else None) # Handle main category change to update subcategories main_category.change(update_subcategories, inputs=main_category, outputs=sub_category) with gr.Row(): user_input = gr.Textbox(label="Your Message", placeholder="Type something...", lines=2) send_button = gr.Button("Send") with gr.Row(): chatbot_output = gr.Chatbot(label="Chat History") def handle_chat(user_input, sub_category, history): if not user_input.strip(): return history, history updated_history, _ = chatbot(user_input, sub_category, history) return updated_history, updated_history send_button.click( handle_chat, inputs=[user_input, sub_category, chatbot_output], outputs=[chatbot_output, chatbot_output] ) chat_interface.launch()