Spaces:
Sleeping
Sleeping
File size: 3,478 Bytes
bc5cf4c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 |
import gradio as gr
import openai
import os
import json
# OpenAI API setup
openai.api_key = os.getenv("GROQ_API_KEY")
openai.api_base = "https://api.groq.com/openai/v1"
# File to store conversation history
CONVERSATION_FILE = "conversation_history.json"
# Function to load conversation history
def load_history():
if not os.path.exists(CONVERSATION_FILE):
# Create the file with an empty list as default content
with open(CONVERSATION_FILE, "w") as file:
json.dump([], file)
try:
with open(CONVERSATION_FILE, "r") as file:
return json.load(file)
except json.JSONDecodeError:
return []
# Function to save conversation history
def save_history(history):
try:
with open(CONVERSATION_FILE, "w") as file:
json.dump(history, file, indent=4)
except Exception as e:
print(f"Error saving history: {e}")
# Function to clear conversation history
def clear_conversation_history():
try:
with open(CONVERSATION_FILE, "w") as file:
json.dump([], file)
return "Conversation history cleared successfully.", ""
except Exception as e:
return f"Error clearing history: {e}", ""
# Function to get response from the LLM
def get_groq_response(message, history=[]):
try:
messages = [{"role": "system", "content": "Precise answer"}] + history + [{"role": "user", "content": message}]
response = openai.ChatCompletion.create(
model="llama-3.1-70b-versatile",
messages=messages
)
return response.choices[0].message["content"]
except Exception as e:
return f"Error: {str(e)}"
# Chatbot function
def chatbot(user_input, history):
# Load conversation history
conversation_history = history or load_history()
# Format history for the LLM
formatted_history = [{"role": "user" if i % 2 == 0 else "assistant", "content": msg} for i, (msg, _) in enumerate(conversation_history)] + \
[{"role": "assistant", "content": response} for _, response in conversation_history]
# Get bot response
bot_response = get_groq_response(user_input, formatted_history)
# Update history with the new conversation
conversation_history.append((user_input, bot_response))
# Save the updated history
save_history(conversation_history)
# Format for HTML display
display_html = "<br>".join(
f"<div><b>User:</b> {user}</div><div><b>Bot:</b> {bot}</div><br>"
for user, bot in conversation_history
)
return conversation_history, display_html, "" # Clear the user input field
# Gradio Interface
with gr.Blocks() as demo:
gr.Markdown("# Chatbot with Enhanced Formatting and Selectable Chat History")
chat_display = gr.HTML(label="Conversation")
user_input = gr.Textbox(label="Type your message here:")
clear_button = gr.Button("Clear History")
system_message = gr.Textbox(label="System Message", interactive=False)
history_state = gr.State(load_history())
# Chat interaction
user_input.submit(chatbot, inputs=[user_input, history_state], outputs=[history_state, chat_display, user_input])
# Clear history button action
clear_button.click(clear_conversation_history, inputs=None, outputs=[system_message, chat_display])
clear_button.click(lambda: [], outputs=history_state) # Reset the history state
# Launch the app
demo.launch()
|