arpit13 commited on
Commit
796585b
Β·
verified Β·
1 Parent(s): a30f3a0

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +8 -135
README.md CHANGED
@@ -1,135 +1,8 @@
1
- # Whale Wallet AI – Market Manipulation Detection
2
-
3
- A powerful Streamlit-based tool that tracks large holders ("whales") on the Arbitrum network to uncover potential market manipulation tactics.
4
-
5
- ## 1. Prerequisites & Setup
6
-
7
- ### 1.1. Python & Dependencies
8
- - Ensure you have Python 3.8+ installed.
9
- - Install required packages via:
10
- ```bash
11
- pip install -r requirements.txt
12
- ```
13
-
14
- ### 1.2. API Keys
15
- You need API keys to fetch on-chain data and real-time prices:
16
- - **ARBISCAN_API_KEY**: For fetching Arbitrum transaction data
17
- - **GEMINI_API_KEY**: For retrieving live token prices
18
- - **OPENAI_API_KEY**: For powering the CrewAI agents
19
-
20
- Save these in a file named `.env` at the project root:
21
- ```env
22
- ARBISCAN_API_KEY=your_arbiscan_key
23
- GEMINI_API_KEY=your_gemini_key
24
- OPENAI_API_KEY=your_openai_key
25
- ```
26
- Note: Sample API keys are provided in the default .env file, but you should replace them with your own for production use.
27
-
28
- ### 1.3. Run the App
29
- Launch the web interface with:
30
- ```bash
31
- streamlit run app.py
32
- ```
33
-
34
- ## 2. Core Features & How to Use Them
35
-
36
- ### 2.1 Track Large Buy/Sell Transactions
37
-
38
- **What it does:**
39
- Monitors on-chain transfers exceeding a configurable threshold (e.g., 1,000 tokens or $100K) for any wallet or contract you specify.
40
-
41
- **How to use:**
42
- 1. In the sidebar, enter one or more wallet addresses
43
- 2. Set your minimum token or USD value filter
44
- 3. Click **Track Transactions**
45
- 4. The dashboard will list incoming/outgoing transfers above the threshold.
46
-
47
- ### 2.2 Identify Trading Patterns of Whale Wallets
48
-
49
- **What it does:**
50
- Uses time-series clustering and sequence analysis to surface recurring behaviors (e.g., cyclical dumping, accumulation bursts).
51
-
52
- **How to use:**
53
- 1. Select a wallet address
54
- 2. Choose a time period (e.g., last 7 days)
55
- 3. Click **Analyze Patterns**
56
- 4. View a summary of detected clusters and drill down into individual events.
57
-
58
- ### 2.3 Analyze Impact of Whale Transactions on Token Prices
59
-
60
- **What it does:**
61
- Correlates large trades against minute-by-minute price ticks to quantify slippage, price spikes, or dumps.
62
-
63
- **How to use:**
64
- 1. Enable **Price Impact** analysis in settings
65
- 2. Specify lookback/lookahead windows (e.g., 5 minutes)
66
- 3. Click **Run Impact Analysis**
67
- 4. See interactive line charts and slippage metrics.
68
-
69
- ### 2.4 Detect Potential Market Manipulation Techniques
70
-
71
- **What it does:**
72
- Automatically flags suspicious behaviors such as:
73
- - **Pump-and-Dump:** Rapid buys followed by coordinated sell-offs
74
- - **Wash Trading:** Self-trading across multiple addresses
75
- - **Spoofing:** Large orders placed then canceled
76
-
77
- **How to use:**
78
- 1. Toggle **Manipulation Detection** on
79
- 2. Adjust sensitivity slider (Low/Medium/High)
80
- 3. Click **Detect**
81
- 4. Examine the **Alerts** panel for flagged events.
82
-
83
- ### 2.5 Generate Reports & Visualizations
84
-
85
- **What it does:**
86
- Compiles whale activity into PDF/CSV summaries and interactive charts.
87
-
88
- **How to use:**
89
- 1. Select **Export** in the top menu
90
- 2. Choose **CSV**, **PDF**, or **PNG**
91
- 3. Specify time range and wallets to include
92
- 4. Click **Download**
93
- 5. Saved file will appear in your browser's download folder.
94
-
95
- ## 3. Advanced Features: CrewAI Integration
96
-
97
- This application leverages CrewAI to provide advanced analysis through specialized AI agents:
98
-
99
- - **Blockchain Data Collector**: Extracts and organizes on-chain data
100
- - **Price Impact Analyst**: Correlates trading activity with price movements
101
- - **Trading Pattern Detector**: Identifies recurring behavioral patterns
102
- - **Market Manipulation Investigator**: Detects potential market abuse
103
- - **Insights Reporter**: Transforms data into actionable intelligence
104
-
105
- ## 4. Project Structure
106
-
107
- ```
108
- /Whale_Arbitrum/
109
- β”œβ”€β”€ app.py # Main Streamlit application entry point
110
- β”œβ”€β”€ requirements.txt # Dependencies and package versions
111
- β”œβ”€β”€ .env # API keys and environment variables
112
- β”œβ”€β”€ modules/
113
- β”‚ β”œβ”€β”€ api_client.py # Arbiscan and Gemini API clients
114
- β”‚ β”œβ”€β”€ data_processor.py # Data processing and analysis
115
- β”‚ β”œβ”€β”€ detection.py # Market manipulation detection algorithms
116
- β”‚ β”œβ”€β”€ visualizer.py # Visualization and report generation
117
- β”‚ └── crew_system.py # CrewAI agentic system
118
- ```
119
-
120
- ## 5. Use Cases
121
-
122
- - **Regulatory Compliance & Fraud Detection**
123
- Auditors and regulators can monitor DeFi markets for wash trades and suspicious dumps.
124
-
125
- - **Investment Strategy Optimization**
126
- Traders gain insight into institutional flows and can calibrate entry/exit points.
127
-
128
- - **Market Research & Analysis**
129
- Researchers study whale behavior to gauge token health and potential volatility.
130
-
131
- - **DeFi Protocol Security Monitoring**
132
- Protocol teams receive alerts on large dumps that may destabilize liquidity pools.
133
-
134
- - **Token Project Risk Assessment**
135
- Token issuers review top-holder actions to flag governance or distribution issues.
 
1
+ title: CryptoAI
2
+ emoji: πŸ“š
3
+ colorFrom: green
4
+ colorTo: gray
5
+ sdk: streamlit
6
+ sdk_version: 1.44.1
7
+ app_file: app.py
8
+ pinned: false