arpitneema commited on
Commit
edc392d
·
1 Parent(s): 79f0fe5

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +0 -24
app.py CHANGED
@@ -15,30 +15,6 @@ nlp = pipeline("question-answering", model=model, tokenizer=tokenizer)
15
  # model = AutoModelForCausalLM.from_pretrained("microsoft/DialoGPT-large")
16
 
17
 
18
- def predict(input, history=[]):
19
- # tokenize the new input sentence
20
- new_user_input_ids = tokenizer.encode(
21
- input + tokenizer.eos_token, return_tensors="pt"
22
- )
23
-
24
- # append the new user input tokens to the chat history
25
- bot_input_ids = torch.cat([torch.LongTensor(history), new_user_input_ids], dim=-1)
26
-
27
- # generate a response
28
- history = model.generate(
29
- bot_input_ids, max_length=4000, pad_token_id=tokenizer.eos_token_id
30
- ).tolist()
31
-
32
- # convert the tokens to text, and then split the responses into lines
33
- response = tokenizer.decode(history[0]).split("<|endoftext|>")
34
- # print('decoded_response-->>'+str(response))
35
- response = [
36
- (response[i], response[i + 1]) for i in range(0, len(response) - 1, 2)
37
- ] # convert to tuples of list
38
- # print('response-->>'+str(response))
39
- return response, history
40
-
41
-
42
  def func(context, question):
43
  result = nlp(question = question, context=context)
44
  return result['answer']
 
15
  # model = AutoModelForCausalLM.from_pretrained("microsoft/DialoGPT-large")
16
 
17
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
18
  def func(context, question):
19
  result = nlp(question = question, context=context)
20
  return result['answer']