Update app.py
Browse files
app.py
CHANGED
@@ -12,26 +12,20 @@ def load_model():
|
|
12 |
|
13 |
ort_session = load_model()
|
14 |
|
|
|
|
|
|
|
15 |
def preprocess_image(image, target_size=(640, 640)):
|
16 |
-
# Convert PIL Image to numpy array if necessary
|
17 |
if isinstance(image, Image.Image):
|
18 |
image = np.array(image)
|
19 |
-
|
20 |
-
# Convert RGB to BGR
|
21 |
image = cv2.cvtColor(image, cv2.COLOR_RGB2BGR)
|
22 |
-
|
23 |
-
# Resize image
|
24 |
image = cv2.resize(image, target_size)
|
25 |
-
# Normalize
|
26 |
image = image.astype(np.float32) / 255.0
|
27 |
-
# Transpose for ONNX input
|
28 |
image = np.transpose(image, (2, 0, 1))
|
29 |
-
# Add batch dimension
|
30 |
image = np.expand_dims(image, axis=0)
|
31 |
return image
|
32 |
|
33 |
def postprocess_results(output, image_shape, confidence_threshold=0.25, iou_threshold=0.45):
|
34 |
-
# Handle different possible output formats
|
35 |
if isinstance(output, (list, tuple)):
|
36 |
predictions = output[0]
|
37 |
elif isinstance(output, np.ndarray):
|
@@ -39,31 +33,24 @@ def postprocess_results(output, image_shape, confidence_threshold=0.25, iou_thre
|
|
39 |
else:
|
40 |
raise ValueError(f"Unexpected output type: {type(output)}")
|
41 |
|
42 |
-
# Reshape if necessary
|
43 |
if len(predictions.shape) == 4:
|
44 |
predictions = predictions.squeeze((0, 1))
|
45 |
elif len(predictions.shape) == 3:
|
46 |
predictions = predictions.squeeze(0)
|
47 |
|
48 |
-
# Extract boxes, scores, and class_ids
|
49 |
boxes = predictions[:, :4]
|
50 |
scores = predictions[:, 4]
|
51 |
class_ids = predictions[:, 5]
|
52 |
|
53 |
-
# Filter by confidence
|
54 |
mask = scores > confidence_threshold
|
55 |
boxes = boxes[mask]
|
56 |
scores = scores[mask]
|
57 |
class_ids = class_ids[mask]
|
58 |
|
59 |
-
# Convert boxes from [x, y, w, h] to [x1, y1, x2, y2]
|
60 |
boxes[:, 2:] += boxes[:, :2]
|
61 |
-
|
62 |
-
# Scale boxes to image size
|
63 |
boxes[:, [0, 2]] *= image_shape[1]
|
64 |
boxes[:, [1, 3]] *= image_shape[0]
|
65 |
|
66 |
-
# Apply NMS
|
67 |
indices = cv2.dnn.NMSBoxes(boxes.tolist(), scores.tolist(), confidence_threshold, iou_threshold)
|
68 |
|
69 |
results = []
|
@@ -80,29 +67,26 @@ def process_image(image):
|
|
80 |
orig_image = image.copy()
|
81 |
processed_image = preprocess_image(image)
|
82 |
|
83 |
-
# Run inference
|
84 |
inputs = {ort_session.get_inputs()[0].name: processed_image}
|
85 |
outputs = ort_session.run(None, inputs)
|
86 |
|
87 |
results = postprocess_results(outputs, image.shape)
|
88 |
|
89 |
-
# Draw bounding boxes on the image
|
90 |
for x1, y1, x2, y2, score, class_id in results:
|
91 |
-
|
92 |
-
|
93 |
-
|
|
|
94 |
|
95 |
return cv2.cvtColor(orig_image, cv2.COLOR_BGR2RGB)
|
96 |
|
97 |
def process_video(video_path):
|
98 |
cap = cv2.VideoCapture(video_path)
|
99 |
|
100 |
-
# Get video properties
|
101 |
width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
|
102 |
height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
|
103 |
fps = int(cap.get(cv2.CAP_PROP_FPS))
|
104 |
|
105 |
-
# Create a temporary file to store the processed video
|
106 |
temp_file = tempfile.NamedTemporaryFile(delete=False, suffix='.mp4')
|
107 |
out = cv2.VideoWriter(temp_file.name, cv2.VideoWriter_fourcc(*'mp4v'), fps, (width, height))
|
108 |
|
@@ -119,7 +103,7 @@ def process_video(video_path):
|
|
119 |
|
120 |
return temp_file.name
|
121 |
|
122 |
-
st.title("License Plate Detection")
|
123 |
|
124 |
uploaded_file = st.file_uploader("Choose an image or video file", type=["jpg", "jpeg", "png", "mp4"])
|
125 |
|
@@ -130,7 +114,7 @@ if uploaded_file is not None:
|
|
130 |
image = Image.open(uploaded_file)
|
131 |
st.image(image, caption="Uploaded Image", use_column_width=True)
|
132 |
|
133 |
-
if st.button("Detect
|
134 |
processed_image = process_image(np.array(image))
|
135 |
st.image(processed_image, caption="Processed Image", use_column_width=True)
|
136 |
|
@@ -140,8 +124,8 @@ if uploaded_file is not None:
|
|
140 |
|
141 |
st.video(tfile.name)
|
142 |
|
143 |
-
if st.button("Detect
|
144 |
processed_video = process_video(tfile.name)
|
145 |
st.video(processed_video)
|
146 |
|
147 |
-
st.write("Upload an image or video to detect license plates.")
|
|
|
12 |
|
13 |
ort_session = load_model()
|
14 |
|
15 |
+
# Define class names (update this based on your model's classes)
|
16 |
+
CLASS_NAMES = ['car', 'license_plate']
|
17 |
+
|
18 |
def preprocess_image(image, target_size=(640, 640)):
|
|
|
19 |
if isinstance(image, Image.Image):
|
20 |
image = np.array(image)
|
|
|
|
|
21 |
image = cv2.cvtColor(image, cv2.COLOR_RGB2BGR)
|
|
|
|
|
22 |
image = cv2.resize(image, target_size)
|
|
|
23 |
image = image.astype(np.float32) / 255.0
|
|
|
24 |
image = np.transpose(image, (2, 0, 1))
|
|
|
25 |
image = np.expand_dims(image, axis=0)
|
26 |
return image
|
27 |
|
28 |
def postprocess_results(output, image_shape, confidence_threshold=0.25, iou_threshold=0.45):
|
|
|
29 |
if isinstance(output, (list, tuple)):
|
30 |
predictions = output[0]
|
31 |
elif isinstance(output, np.ndarray):
|
|
|
33 |
else:
|
34 |
raise ValueError(f"Unexpected output type: {type(output)}")
|
35 |
|
|
|
36 |
if len(predictions.shape) == 4:
|
37 |
predictions = predictions.squeeze((0, 1))
|
38 |
elif len(predictions.shape) == 3:
|
39 |
predictions = predictions.squeeze(0)
|
40 |
|
|
|
41 |
boxes = predictions[:, :4]
|
42 |
scores = predictions[:, 4]
|
43 |
class_ids = predictions[:, 5]
|
44 |
|
|
|
45 |
mask = scores > confidence_threshold
|
46 |
boxes = boxes[mask]
|
47 |
scores = scores[mask]
|
48 |
class_ids = class_ids[mask]
|
49 |
|
|
|
50 |
boxes[:, 2:] += boxes[:, :2]
|
|
|
|
|
51 |
boxes[:, [0, 2]] *= image_shape[1]
|
52 |
boxes[:, [1, 3]] *= image_shape[0]
|
53 |
|
|
|
54 |
indices = cv2.dnn.NMSBoxes(boxes.tolist(), scores.tolist(), confidence_threshold, iou_threshold)
|
55 |
|
56 |
results = []
|
|
|
67 |
orig_image = image.copy()
|
68 |
processed_image = preprocess_image(image)
|
69 |
|
|
|
70 |
inputs = {ort_session.get_inputs()[0].name: processed_image}
|
71 |
outputs = ort_session.run(None, inputs)
|
72 |
|
73 |
results = postprocess_results(outputs, image.shape)
|
74 |
|
|
|
75 |
for x1, y1, x2, y2, score, class_id in results:
|
76 |
+
color = (0, 255, 0) if CLASS_NAMES[class_id] == 'car' else (255, 0, 0)
|
77 |
+
cv2.rectangle(orig_image, (x1, y1), (x2, y2), color, 2)
|
78 |
+
label = f"{CLASS_NAMES[class_id]}: {score:.2f}"
|
79 |
+
cv2.putText(orig_image, label, (x1, y1 - 10), cv2.FONT_HERSHEY_SIMPLEX, 0.9, color, 2)
|
80 |
|
81 |
return cv2.cvtColor(orig_image, cv2.COLOR_BGR2RGB)
|
82 |
|
83 |
def process_video(video_path):
|
84 |
cap = cv2.VideoCapture(video_path)
|
85 |
|
|
|
86 |
width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
|
87 |
height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
|
88 |
fps = int(cap.get(cv2.CAP_PROP_FPS))
|
89 |
|
|
|
90 |
temp_file = tempfile.NamedTemporaryFile(delete=False, suffix='.mp4')
|
91 |
out = cv2.VideoWriter(temp_file.name, cv2.VideoWriter_fourcc(*'mp4v'), fps, (width, height))
|
92 |
|
|
|
103 |
|
104 |
return temp_file.name
|
105 |
|
106 |
+
st.title("Vehicle and License Plate Detection")
|
107 |
|
108 |
uploaded_file = st.file_uploader("Choose an image or video file", type=["jpg", "jpeg", "png", "mp4"])
|
109 |
|
|
|
114 |
image = Image.open(uploaded_file)
|
115 |
st.image(image, caption="Uploaded Image", use_column_width=True)
|
116 |
|
117 |
+
if st.button("Detect Objects"):
|
118 |
processed_image = process_image(np.array(image))
|
119 |
st.image(processed_image, caption="Processed Image", use_column_width=True)
|
120 |
|
|
|
124 |
|
125 |
st.video(tfile.name)
|
126 |
|
127 |
+
if st.button("Detect Objects"):
|
128 |
processed_video = process_video(tfile.name)
|
129 |
st.video(processed_video)
|
130 |
|
131 |
+
st.write("Upload an image or video to detect vehicles and license plates.")
|