arsath-sm commited on
Commit
95a4f19
1 Parent(s): 9f0b3a7

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +29 -13
app.py CHANGED
@@ -12,20 +12,26 @@ def load_model():
12
 
13
  ort_session = load_model()
14
 
15
- # Define class names and their corresponding indices
16
- CLASS_NAMES = {0: 'car', 1: 'license_plate'}
17
-
18
  def preprocess_image(image, target_size=(640, 640)):
 
19
  if isinstance(image, Image.Image):
20
  image = np.array(image)
 
 
21
  image = cv2.cvtColor(image, cv2.COLOR_RGB2BGR)
 
 
22
  image = cv2.resize(image, target_size)
 
23
  image = image.astype(np.float32) / 255.0
 
24
  image = np.transpose(image, (2, 0, 1))
 
25
  image = np.expand_dims(image, axis=0)
26
  return image
27
 
28
  def postprocess_results(output, image_shape, confidence_threshold=0.25, iou_threshold=0.45):
 
29
  if isinstance(output, (list, tuple)):
30
  predictions = output[0]
31
  elif isinstance(output, np.ndarray):
@@ -33,33 +39,40 @@ def postprocess_results(output, image_shape, confidence_threshold=0.25, iou_thre
33
  else:
34
  raise ValueError(f"Unexpected output type: {type(output)}")
35
 
 
36
  if len(predictions.shape) == 4:
37
  predictions = predictions.squeeze((0, 1))
38
  elif len(predictions.shape) == 3:
39
  predictions = predictions.squeeze(0)
40
 
 
41
  boxes = predictions[:, :4]
42
  scores = predictions[:, 4]
43
  class_ids = predictions[:, 5]
44
 
 
45
  mask = scores > confidence_threshold
46
  boxes = boxes[mask]
47
  scores = scores[mask]
48
  class_ids = class_ids[mask]
49
 
 
50
  boxes[:, 2:] += boxes[:, :2]
 
 
51
  boxes[:, [0, 2]] *= image_shape[1]
52
  boxes[:, [1, 3]] *= image_shape[0]
53
 
 
54
  indices = cv2.dnn.NMSBoxes(boxes.tolist(), scores.tolist(), confidence_threshold, iou_threshold)
55
 
56
  results = []
57
  for i in indices:
58
  box = boxes[i]
59
  score = scores[i]
60
- class_id = int(class_ids[i])
61
  x1, y1, x2, y2 = map(int, box)
62
- results.append((x1, y1, x2, y2, float(score), class_id))
63
 
64
  return results
65
 
@@ -67,26 +80,29 @@ def process_image(image):
67
  orig_image = image.copy()
68
  processed_image = preprocess_image(image)
69
 
 
70
  inputs = {ort_session.get_inputs()[0].name: processed_image}
71
  outputs = ort_session.run(None, inputs)
72
 
73
  results = postprocess_results(outputs, image.shape)
74
 
 
75
  for x1, y1, x2, y2, score, class_id in results:
76
- color = (0, 255, 0) if CLASS_NAMES.get(class_id, 'unknown') == 'car' else (255, 0, 0)
77
- cv2.rectangle(orig_image, (x1, y1), (x2, y2), color, 2)
78
- label = f"{CLASS_NAMES.get(class_id, 'unknown')}: {score:.2f}"
79
- cv2.putText(orig_image, label, (x1, y1 - 10), cv2.FONT_HERSHEY_SIMPLEX, 0.9, color, 2)
80
 
81
  return cv2.cvtColor(orig_image, cv2.COLOR_BGR2RGB)
82
 
83
  def process_video(video_path):
84
  cap = cv2.VideoCapture(video_path)
85
 
 
86
  width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
87
  height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
88
  fps = int(cap.get(cv2.CAP_PROP_FPS))
89
 
 
90
  temp_file = tempfile.NamedTemporaryFile(delete=False, suffix='.mp4')
91
  out = cv2.VideoWriter(temp_file.name, cv2.VideoWriter_fourcc(*'mp4v'), fps, (width, height))
92
 
@@ -103,7 +119,7 @@ def process_video(video_path):
103
 
104
  return temp_file.name
105
 
106
- st.title("Vehicle and License Plate Detection")
107
 
108
  uploaded_file = st.file_uploader("Choose an image or video file", type=["jpg", "jpeg", "png", "mp4"])
109
 
@@ -114,7 +130,7 @@ if uploaded_file is not None:
114
  image = Image.open(uploaded_file)
115
  st.image(image, caption="Uploaded Image", use_column_width=True)
116
 
117
- if st.button("Detect Objects"):
118
  processed_image = process_image(np.array(image))
119
  st.image(processed_image, caption="Processed Image", use_column_width=True)
120
 
@@ -124,8 +140,8 @@ if uploaded_file is not None:
124
 
125
  st.video(tfile.name)
126
 
127
- if st.button("Detect Objects"):
128
  processed_video = process_video(tfile.name)
129
  st.video(processed_video)
130
 
131
- st.write("Upload an image or video to detect vehicles and license plates.")
 
12
 
13
  ort_session = load_model()
14
 
 
 
 
15
  def preprocess_image(image, target_size=(640, 640)):
16
+ # Convert PIL Image to numpy array if necessary
17
  if isinstance(image, Image.Image):
18
  image = np.array(image)
19
+
20
+ # Convert RGB to BGR
21
  image = cv2.cvtColor(image, cv2.COLOR_RGB2BGR)
22
+
23
+ # Resize image
24
  image = cv2.resize(image, target_size)
25
+ # Normalize
26
  image = image.astype(np.float32) / 255.0
27
+ # Transpose for ONNX input
28
  image = np.transpose(image, (2, 0, 1))
29
+ # Add batch dimension
30
  image = np.expand_dims(image, axis=0)
31
  return image
32
 
33
  def postprocess_results(output, image_shape, confidence_threshold=0.25, iou_threshold=0.45):
34
+ # Handle different possible output formats
35
  if isinstance(output, (list, tuple)):
36
  predictions = output[0]
37
  elif isinstance(output, np.ndarray):
 
39
  else:
40
  raise ValueError(f"Unexpected output type: {type(output)}")
41
 
42
+ # Reshape if necessary
43
  if len(predictions.shape) == 4:
44
  predictions = predictions.squeeze((0, 1))
45
  elif len(predictions.shape) == 3:
46
  predictions = predictions.squeeze(0)
47
 
48
+ # Extract boxes, scores, and class_ids
49
  boxes = predictions[:, :4]
50
  scores = predictions[:, 4]
51
  class_ids = predictions[:, 5]
52
 
53
+ # Filter by confidence
54
  mask = scores > confidence_threshold
55
  boxes = boxes[mask]
56
  scores = scores[mask]
57
  class_ids = class_ids[mask]
58
 
59
+ # Convert boxes from [x, y, w, h] to [x1, y1, x2, y2]
60
  boxes[:, 2:] += boxes[:, :2]
61
+
62
+ # Scale boxes to image size
63
  boxes[:, [0, 2]] *= image_shape[1]
64
  boxes[:, [1, 3]] *= image_shape[0]
65
 
66
+ # Apply NMS
67
  indices = cv2.dnn.NMSBoxes(boxes.tolist(), scores.tolist(), confidence_threshold, iou_threshold)
68
 
69
  results = []
70
  for i in indices:
71
  box = boxes[i]
72
  score = scores[i]
73
+ class_id = class_ids[i]
74
  x1, y1, x2, y2 = map(int, box)
75
+ results.append((x1, y1, x2, y2, float(score), int(class_id)))
76
 
77
  return results
78
 
 
80
  orig_image = image.copy()
81
  processed_image = preprocess_image(image)
82
 
83
+ # Run inference
84
  inputs = {ort_session.get_inputs()[0].name: processed_image}
85
  outputs = ort_session.run(None, inputs)
86
 
87
  results = postprocess_results(outputs, image.shape)
88
 
89
+ # Draw bounding boxes on the image
90
  for x1, y1, x2, y2, score, class_id in results:
91
+ cv2.rectangle(orig_image, (x1, y1), (x2, y2), (0, 255, 0), 2)
92
+ label = f"License Plate: {score:.2f}"
93
+ cv2.putText(orig_image, label, (x1, y1 - 10), cv2.FONT_HERSHEY_SIMPLEX, 0.9, (0, 255, 0), 2)
 
94
 
95
  return cv2.cvtColor(orig_image, cv2.COLOR_BGR2RGB)
96
 
97
  def process_video(video_path):
98
  cap = cv2.VideoCapture(video_path)
99
 
100
+ # Get video properties
101
  width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
102
  height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
103
  fps = int(cap.get(cv2.CAP_PROP_FPS))
104
 
105
+ # Create a temporary file to store the processed video
106
  temp_file = tempfile.NamedTemporaryFile(delete=False, suffix='.mp4')
107
  out = cv2.VideoWriter(temp_file.name, cv2.VideoWriter_fourcc(*'mp4v'), fps, (width, height))
108
 
 
119
 
120
  return temp_file.name
121
 
122
+ st.title("License Plate Detection")
123
 
124
  uploaded_file = st.file_uploader("Choose an image or video file", type=["jpg", "jpeg", "png", "mp4"])
125
 
 
130
  image = Image.open(uploaded_file)
131
  st.image(image, caption="Uploaded Image", use_column_width=True)
132
 
133
+ if st.button("Detect License Plates"):
134
  processed_image = process_image(np.array(image))
135
  st.image(processed_image, caption="Processed Image", use_column_width=True)
136
 
 
140
 
141
  st.video(tfile.name)
142
 
143
+ if st.button("Detect License Plates"):
144
  processed_video = process_video(tfile.name)
145
  st.video(processed_video)
146
 
147
+ st.write("Upload an image or video to detect license plates.")