File size: 1,690 Bytes
9aac0c5
 
 
48eec74
 
 
 
 
 
9aac0c5
2b3c229
48eec74
 
9aac0c5
 
9d90f76
 
2b3c229
 
9aac0c5
 
 
 
 
 
 
 
eb5982c
 
 
9aac0c5
eb5982c
 
 
 
 
 
 
9aac0c5
 
 
 
eb5982c
 
 
 
9aac0c5
eb5982c
9aac0c5
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
import gradio as gr
import tensorflow as tf
import numpy as np
from huggingface_hub import hf_hub_download

# Function to load model from H5 file
def load_model_from_hub(repo_id, filename):
    model_path = hf_hub_download(repo_id=repo_id, filename=filename)
    return tf.keras.models.load_model(model_path)

# Load models from Hugging Face Hub
model1 = load_model_from_hub("arsath-sm/real-fake-face-detection-model1", "face_detection_model1.h5")
model2 = load_model_from_hub("arsath-sm/real-fake-face-detection-model2", "face_detection_model2.h5")

def preprocess_image(image):
    img = tf.convert_to_tensor(image)
    img = tf.image.resize(img, (150, 150))
    img = img / 255.0
    return tf.expand_dims(img, 0)

def predict_image(image):
    preprocessed_image = preprocess_image(image)
    
    # Make predictions using both models
    pred1 = model1.predict(preprocessed_image)[0][0]
    pred2 = model2.predict(preprocessed_image)[0][0]
    
    # Prepare results for each model
    result1 = "Real" if pred1 > 0.5 else "Fake"
    confidence1 = pred1 if pred1 > 0.5 else 1 - pred1
    
    result2 = "Real" if pred2 > 0.5 else "Fake"
    confidence2 = pred2 if pred2 > 0.5 else 1 - pred2
    
    return (
        f"Model 1: {result1} (Confidence: {confidence1:.2f})",
        f"Model 2: {result2} (Confidence: {confidence2:.2f})"
    )

iface = gr.Interface(
    fn=predict_image,
    inputs=gr.Image(),
    outputs=[
        gr.Textbox(label="Model 1 Prediction"),
        gr.Textbox(label="Model 2 Prediction")
    ],
    title="Real vs Fake Face Detection",
    description="Upload an image to determine if it's a real or fake face using two different models."
)

iface.launch()