arsath-sm's picture
Intial commit
9aac0c5
raw
history blame
1.13 kB
import gradio as gr
import tensorflow as tf
from PIL import Image
import numpy as np
# Load the models
model1 = tf.keras.models.load_model('face_detection_model1.h5')
model2 = tf.keras.models.load_model('face_detection_model2.h5')
def preprocess_image(image):
img = Image.fromarray(image.astype('uint8'), 'RGB')
img = img.resize((150, 150))
img_array = np.array(img) / 255.0
return np.expand_dims(img_array, axis=0)
def predict_image(image):
preprocessed_image = preprocess_image(image)
# Make predictions using both models
pred1 = model1.predict(preprocessed_image)[0][0]
pred2 = model2.predict(preprocessed_image)[0][0]
# Average the predictions
avg_pred = (pred1 + pred2) / 2
result = "Real" if avg_pred > 0.5 else "Fake"
confidence = avg_pred if avg_pred > 0.5 else 1 - avg_pred
return f"{result} (Confidence: {confidence:.2f})"
iface = gr.Interface(
fn=predict_image,
inputs=gr.Image(),
outputs="text",
title="Real vs Fake Face Detection",
description="Upload an image to determine if it's a real or fake face."
)
iface.launch()