|
import gradio as gr |
|
import tensorflow as tf |
|
import numpy as np |
|
from huggingface_hub import hf_hub_download |
|
|
|
|
|
def load_model_from_hub(repo_id, filename): |
|
model_path = hf_hub_download(repo_id=repo_id, filename=filename) |
|
return tf.keras.models.load_model(model_path) |
|
|
|
|
|
model1 = load_model_from_hub("arsath-sm/real-fake-face-detection-model1", "face_detection_model1.h5") |
|
model2 = load_model_from_hub("arsath-sm/real-fake-face-detection-model2", "face_detection_model2.h5") |
|
|
|
def preprocess_image(image): |
|
img = tf.convert_to_tensor(image) |
|
img = tf.image.resize(img, (150, 150)) |
|
img = img / 255.0 |
|
return tf.expand_dims(img, 0) |
|
|
|
def predict_image(image): |
|
preprocessed_image = preprocess_image(image) |
|
|
|
|
|
pred1 = model1.predict(preprocessed_image)[0][0] |
|
pred2 = model2.predict(preprocessed_image)[0][0] |
|
|
|
|
|
result1 = "Real" if pred1 > 0.5 else "Fake" |
|
confidence1 = pred1 if pred1 > 0.5 else 1 - pred1 |
|
|
|
result2 = "Real" if pred2 > 0.5 else "Fake" |
|
confidence2 = pred2 if pred2 > 0.5 else 1 - pred2 |
|
|
|
return ( |
|
f"Model 1: {result1} (Confidence: {confidence1:.2f})", |
|
f"Model 2: {result2} (Confidence: {confidence2:.2f})" |
|
) |
|
|
|
iface = gr.Interface( |
|
fn=predict_image, |
|
inputs=gr.Image(), |
|
outputs=[ |
|
gr.Textbox(label="Model 1 Prediction"), |
|
gr.Textbox(label="Model 2 Prediction") |
|
], |
|
title="Real vs Fake Face Detection", |
|
description="Upload an image to determine if it's a real or fake face using two different models." |
|
) |
|
|
|
iface.launch() |