import gradio as gr from huggingface_hub import from_pretrained_keras import tensorflow as tf import numpy as np # Load models from Hugging Face Hub model1 = from_pretrained_keras("arsath-sm/real-fake-face-detection-model1") model2 = from_pretrained_keras("arsath-sm/real-fake-face-detection-model2") def preprocess_image(image): img = tf.image.resize(image, (150, 150)) img = img / 255.0 return tf.expand_dims(img, 0) def predict_image(image): preprocessed_image = preprocess_image(image) # Make predictions using both models pred1 = model1.predict(preprocessed_image)[0][0] pred2 = model2.predict(preprocessed_image)[0][0] # Average the predictions avg_pred = (pred1 + pred2) / 2 result = "Real" if avg_pred > 0.5 else "Fake" confidence = avg_pred if avg_pred > 0.5 else 1 - avg_pred return f"{result} (Confidence: {confidence:.2f})" iface = gr.Interface( fn=predict_image, inputs=gr.Image(), outputs="text", title="Real vs Fake Face Detection", description="Upload an image to determine if it's a real or fake face." ) iface.launch()