Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,16 +1,49 @@
|
|
1 |
import gradio as gr
|
2 |
import tensorflow as tf
|
3 |
import numpy as np
|
4 |
-
from huggingface_hub import hf_hub_download
|
5 |
|
6 |
-
|
7 |
-
|
8 |
-
|
9 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
10 |
|
11 |
-
|
12 |
-
|
13 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
14 |
|
15 |
def preprocess_image(image):
|
16 |
img = tf.convert_to_tensor(image)
|
@@ -19,22 +52,31 @@ def preprocess_image(image):
|
|
19 |
return tf.expand_dims(img, 0)
|
20 |
|
21 |
def predict_image(image):
|
|
|
|
|
|
|
|
|
|
|
22 |
preprocessed_image = preprocess_image(image)
|
|
|
23 |
|
24 |
-
|
25 |
-
|
26 |
-
|
|
|
|
|
|
|
|
|
27 |
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
|
|
|
|
33 |
|
34 |
-
return
|
35 |
-
"Model 1 Prediction": f"{result1} (Confidence: {confidence1:.2f})",
|
36 |
-
"Model 2 Prediction": f"{result2} (Confidence: {confidence2:.2f})"
|
37 |
-
}
|
38 |
|
39 |
# Create the Gradio interface
|
40 |
iface = gr.Interface(
|
@@ -42,7 +84,8 @@ iface = gr.Interface(
|
|
42 |
inputs=gr.Image(),
|
43 |
outputs={
|
44 |
"Model 1 Prediction": gr.Textbox(),
|
45 |
-
"Model 2 Prediction": gr.Textbox()
|
|
|
46 |
},
|
47 |
title="Real vs AI Face Classification",
|
48 |
description="Upload an image to classify whether it's a real face or an AI-generated face using two different models."
|
|
|
1 |
import gradio as gr
|
2 |
import tensorflow as tf
|
3 |
import numpy as np
|
4 |
+
from huggingface_hub import hf_hub_download, list_repo_files
|
5 |
|
6 |
+
def list_files_in_repo(repo_id):
|
7 |
+
try:
|
8 |
+
files = list_repo_files(repo_id)
|
9 |
+
print(f"Files in {repo_id}:")
|
10 |
+
for file in files:
|
11 |
+
print(file)
|
12 |
+
return files
|
13 |
+
except Exception as e:
|
14 |
+
print(f"Error listing files in {repo_id}: {str(e)}")
|
15 |
+
return []
|
16 |
|
17 |
+
def load_model_from_hub(repo_id):
|
18 |
+
files = list_files_in_repo(repo_id)
|
19 |
+
model_file = next((f for f in files if f.endswith('.h5') or f.endswith('.keras')), None)
|
20 |
+
|
21 |
+
if model_file is None:
|
22 |
+
raise ValueError(f"No .h5 or .keras file found in {repo_id}")
|
23 |
+
|
24 |
+
try:
|
25 |
+
model_path = hf_hub_download(repo_id=repo_id, filename=model_file)
|
26 |
+
return tf.keras.models.load_model(model_path)
|
27 |
+
except Exception as e:
|
28 |
+
print(f"Error loading model from {repo_id}: {str(e)}")
|
29 |
+
raise
|
30 |
+
|
31 |
+
# Try to load models
|
32 |
+
try:
|
33 |
+
print("Attempting to load Model 1...")
|
34 |
+
model1 = load_model_from_hub("arsath-sm/face_classification_model1")
|
35 |
+
print("Model 1 loaded successfully.")
|
36 |
+
except Exception as e:
|
37 |
+
print(f"Failed to load Model 1: {str(e)}")
|
38 |
+
model1 = None
|
39 |
+
|
40 |
+
try:
|
41 |
+
print("Attempting to load Model 2...")
|
42 |
+
model2 = load_model_from_hub("arsath-sm/face_classification_model2")
|
43 |
+
print("Model 2 loaded successfully.")
|
44 |
+
except Exception as e:
|
45 |
+
print(f"Failed to load Model 2: {str(e)}")
|
46 |
+
model2 = None
|
47 |
|
48 |
def preprocess_image(image):
|
49 |
img = tf.convert_to_tensor(image)
|
|
|
52 |
return tf.expand_dims(img, 0)
|
53 |
|
54 |
def predict_image(image):
|
55 |
+
if model1 is None and model2 is None:
|
56 |
+
return {
|
57 |
+
"Error": "Both models failed to load. Please check the model repositories and try again."
|
58 |
+
}
|
59 |
+
|
60 |
preprocessed_image = preprocess_image(image)
|
61 |
+
results = {}
|
62 |
|
63 |
+
if model1 is not None:
|
64 |
+
pred1 = model1.predict(preprocessed_image)[0][0]
|
65 |
+
result1 = "Real" if pred1 > 0.5 else "Fake"
|
66 |
+
confidence1 = pred1 if pred1 > 0.5 else 1 - pred1
|
67 |
+
results["Model 1 Prediction"] = f"{result1} (Confidence: {confidence1:.2f})"
|
68 |
+
else:
|
69 |
+
results["Model 1 Prediction"] = "Model failed to load"
|
70 |
|
71 |
+
if model2 is not None:
|
72 |
+
pred2 = model2.predict(preprocessed_image)[0][0]
|
73 |
+
result2 = "Real" if pred2 > 0.5 else "Fake"
|
74 |
+
confidence2 = pred2 if pred2 > 0.5 else 1 - pred2
|
75 |
+
results["Model 2 Prediction"] = f"{result2} (Confidence: {confidence2:.2f})"
|
76 |
+
else:
|
77 |
+
results["Model 2 Prediction"] = "Model failed to load"
|
78 |
|
79 |
+
return results
|
|
|
|
|
|
|
80 |
|
81 |
# Create the Gradio interface
|
82 |
iface = gr.Interface(
|
|
|
84 |
inputs=gr.Image(),
|
85 |
outputs={
|
86 |
"Model 1 Prediction": gr.Textbox(),
|
87 |
+
"Model 2 Prediction": gr.Textbox(),
|
88 |
+
"Error": gr.Textbox()
|
89 |
},
|
90 |
title="Real vs AI Face Classification",
|
91 |
description="Upload an image to classify whether it's a real face or an AI-generated face using two different models."
|