import gradio as gr import tensorflow as tf import numpy as np from huggingface_hub import hf_hub_download # Function to load model from Hugging Face Hub def load_model_from_hub(repo_id, filename): model_path = hf_hub_download(repo_id=repo_id, filename=filename) return tf.keras.models.load_model(model_path) # Load models from Hugging Face Hub model1 = load_model_from_hub("arsath-sm/face_classification_model1", "face_classification_model1.h5") model2 = load_model_from_hub("arsath-sm/face_classification_model2", "face_classification_model2.h5") def preprocess_image(image): img = tf.image.resize(image, (224, 224)) # Resize to match the input size of your models img = tf.cast(img, tf.float32) / 255.0 # Normalize pixel values return tf.expand_dims(img, 0) # Add batch dimension def predict_image(image): preprocessed_image = preprocess_image(image) # Make predictions using both models pred1 = model1.predict(preprocessed_image)[0][0] pred2 = model2.predict(preprocessed_image)[0][0] # Prepare results for each model result1 = "Real" if pred1 > 0.5 else "Fake" confidence1 = pred1 if pred1 > 0.5 else 1 - pred1 result2 = "Real" if pred2 > 0.5 else "Fake" confidence2 = pred2 if pred2 > 0.5 else 1 - pred2 return { "Model 1 (ResNet) Prediction": f"{result1} (Confidence: {confidence1:.2f})", "Model 2 (Inception) Prediction": f"{result2} (Confidence: {confidence2:.2f})" } # Create the Gradio interface iface = gr.Interface( fn=predict_image, inputs=gr.Image(), outputs={ "Model 1 (ResNet) Prediction": gr.Textbox(), "Model 2 (Inception) Prediction": gr.Textbox() }, title="Real vs AI-Generated Face Classification", description="Upload an image to classify whether it's a real face or an AI-generated face using two different models: ResNet-style and Inception-style." ) # Launch the app iface.launch()