import gradio as gr import tensorflow as tf from tensorflow.keras.preprocessing import image import numpy as np from huggingface_hub import hf_hub_download import os def load_model_from_hub(repo_id, filename): model_path = hf_hub_download(repo_id=repo_id, filename=filename) return tf.keras.models.load_model(model_path) # Load the models model1 = load_model_from_hub("arsath-sm/face_classification_model1", "face_classification_model1.h5") model2 = load_model_from_hub("arsath-sm/face_classification_model2", "face_classification_model2.h5") # Preprocess the image def preprocess_image(img): img = img.resize((224, 224)) # Adjust size as needed img = image.img_to_array(img) img = np.expand_dims(img, axis=0) img = img / 255.0 return img # Make predictions def predict(img): preprocessed_img = preprocess_image(img) prediction1 = model1.predict(preprocessed_img)[0][0] prediction2 = model2.predict(preprocessed_img)[0][0] result1 = "Real" if prediction1 > 0.5 else "Fake" result2 = "Real" if prediction2 > 0.5 else "Fake" confidence1 = prediction1 if result1 == "Real" else 1 - prediction1 confidence2 = prediction2 if result2 == "Real" else 1 - prediction2 return { "Model 1 Prediction": f"{result1} (Confidence: {confidence1:.2f})", "Model 2 Prediction": f"{result2} (Confidence: {confidence2:.2f})" } # Create the Gradio interface iface = gr.Interface( fn=predict, inputs=gr.Image(type="pil"), outputs={ "Model 1 Prediction": gr.Textbox(), "Model 2 Prediction": gr.Textbox() }, title="Real vs AI Face Classification", description="Upload an image to classify whether it's a real face or an AI-generated face using two different models." ) # Launch the app iface.launch()