File size: 5,510 Bytes
52938ea
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
import gradio as gr
import pandas as pd
from glob import glob
from pathlib import Path
from tabs.dashboard import df
from tabs.faq import (
    about_olas_predict_benchmark,
    about_olas_predict,
    about_the_dataset,
    about_the_tools
)

from tabs.howto_benchmark import how_to_run
from tabs.run_benchmark import run_benchmark_main


demo = gr.Blocks()


def run_benchmark_gradio(tool_name, model_name, openai_api_key, anthropic_api_key):
    """Run the benchmark using inputs."""
    if tool_name is None:
        return "Please enter the name of your tool."
    if openai_api_key is None and anthropic_api_key is None:
        return "Please enter either OpenAI or Anthropic API key."
    
    result = run_benchmark_main(tool_name, model_name, openai_api_key, anthropic_api_key)
    if result == 'completed':
        # get the results file in the results directory
        fns = glob('results/*.csv')

        print(f"Number of files in results directory: {len(fns)}")

        # convert to Path
        files = [Path(file) for file in fns]

        # get results and summary files
        results_files = [file for file in files if 'results' in file.name]

        # the other file is the summary file
        summary_files = [file for file in files if 'summary' in file.name]

        print(results_files, summary_files)

        # get the path with results
        results_df = pd.read_csv(results_files[0])
        summary_df = pd.read_csv(summary_files[0])

        # make sure all df float values are rounded to 4 decimal places
        results_df = results_df.round(4)
        summary_df = summary_df.round(4)

        return gr.Dataframe(value=results_df), gr.Dataframe(value=summary_df)
    
    return gr.Textbox(label="Benchmark Result", value=result, interactive=False), gr.Textbox(label="Summary", value="")


with demo:
    gr.HTML("<h1>Olas Predict Benchmark</hjson>")
    gr.Markdown("Leaderboard showing the performance of Olas Predict tools on the Autocast dataset and overview of the project.")

    with gr.Tabs() as tabs:
        # first tab - leaderboard
        with gr.TabItem("πŸ… Benchmark Leaderboard", id=0):

            gr.components.Dataframe(
                value=df,
            )

        # second tab - about
        with gr.TabItem("ℹ️ About"):
            with gr.Row():
                with gr.Accordion("About the Benchmark", open=False):
                    gr.Markdown(about_olas_predict_benchmark)
            with gr.Row():
                with gr.Accordion("About the Tools", open=False):
                    gr.Markdown(about_the_tools)
            with gr.Row():
                with gr.Accordion("About the Autocast Dataset", open=False):
                    gr.Markdown(about_the_dataset)
            with gr.Row():
                with gr.Accordion("About Olas", open=False):
                    gr.Markdown(about_olas_predict)

        
        # third tab - how to run the benchmark
        with gr.TabItem("πŸš€ Contribute"):
            gr.Markdown(how_to_run)

        def update_dropdown(tool):
            if "claude" in tool:
                return ["claude-3-haiku-20240307", "claude-3-sonnet-20240229", "claude-3-opus-20240229"]
            else:
                return ["gpt-3.5-turbo-0125", "gpt-4-0125-preview"]


        # fourth tab - run the benchmark
        with gr.TabItem("πŸ”₯ Run the Benchmark"):
            with gr.Row():
                tool_name = gr.Dropdown(
                    [
                        "prediction-offline",
                        "prediction-online",
                        # "prediction-online-summarized-info",
                        "prediction-offline-sme",
                        "prediction-online-sme",
                        "claude-prediction-offline",
                        "claude-prediction-online",
                        'prediction-request-rag',
                        "prediction-with-research-conservative",
                        "prediction-with-research-bold",
                        "prediction-request-reasoning-claude",
                        "prediction-request-rag-claude",
                        "prediction-url-cot-claude",
                    ], label="Tool Name", info="Choose the tool to run")
                model_name = gr.Dropdown([
                    "gpt-3.5-turbo-0125",
                    "gpt-4-0125-preview"
                    "claude-3-haiku-20240307", 
                    "claude-3-sonnet-20240229", 
                    "claude-3-opus-20240229",
                ], label="Model Name", info="Choose the model to use")
            with gr.Row():
                openai_api_key = gr.Textbox(label="OpenAI API Key", placeholder="Enter your OpenAI API key here", type="password")
                anthropic_api_key = gr.Textbox(label="Anthropic API Key", placeholder="Enter your Anthropic API key here", type="password")
            with gr.Row():
                run_button = gr.Button("Run Benchmark")
            with gr.Row():
                with gr.Accordion("Results", open=True):
                    result = gr.Dataframe()
            with gr.Row():
                with gr.Accordion("Summary", open=False):
                    summary = gr.Dataframe()
            
            run_button.click(run_benchmark_gradio, 
                            inputs=[tool_name, model_name, openai_api_key, anthropic_api_key], 
                            outputs=[result, summary])

demo.queue(default_concurrency_limit=40).launch(server_port=7860)