Spaces:
Runtime error
Runtime error
File size: 1,173 Bytes
42280ee fffba20 42280ee fffba20 e80542f fffba20 abd4032 fffba20 abd4032 fffba20 abd4032 fffba20 a6f2fd4 9b056c8 1f23c6c 4b6c77a fffba20 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 |
from fastai.text.all import *
import gradio as gr
from blurr.text.modeling.all import *
learn = load_learner("model.pkl")
def predict(inp:str):
preds = learn.blurr_predict([inp])[0]
preds_dict = dict(zip(preds['class_labels'], preds['probs']))
preds_dict = sorted(preds_dict.items(), key=operator.itemgetter(1), reverse=True)[:5]
preds_df = pd.DataFrame(preds_dict, columns=['Specialty', 'Probability'])
preds_df['Probability'] = preds_df['Probability'].apply(lambda x: f"{x*100:.4f}%")
return preds_df
intf = gr.Interface(fn=predict,
inputs=gr.inputs.Textbox(label="What are the symptoms?"),
outputs=gr.outputs.Dataframe(),
title="Medical Specialty Classification from Symptoms",
description="Given a descriptive prompt of symptoms, the model classifies which medical specialty might the symptoms be related too.",
examples=["I have been having a headache for two weeks",
"I have rashes on my skin",
"I have been coughing for more than a month"]
)
intf.launch()
|