Spaces:
Sleeping
Sleeping
File size: 7,075 Bytes
120d6b7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 |
import gradio as gr
import pandas as pd
def prepare_trades(trades_df):
trades_df['creation_timestamp'] = pd.to_datetime(trades_df['creation_timestamp'])
trades_df['month_year'] = trades_df['creation_timestamp'].dt.to_period('M').astype(str)
trades_df['month_year_week'] = trades_df['creation_timestamp'].dt.to_period('W').astype(str)
trades_df['winning_trade'] = trades_df['winning_trade'].astype(int)
return trades_df
def get_overall_trades(trades_df):
trades_count = trades_df.groupby('month_year_week').size().reset_index()
trades_count.columns = trades_count.columns.astype(str)
trades_count.rename(columns={'0': 'trades'}, inplace=True)
return trades_count
def get_overall_winning_trades(trades_df):
winning_trades = trades_df.groupby(['month_year_week'])['winning_trade'].sum() / trades_df.groupby(['month_year_week'])['winning_trade'].count() * 100
# winning_trades is a series, give it a dataframe
winning_trades = winning_trades.reset_index()
winning_trades.columns = winning_trades.columns.astype(str)
winning_trades.columns = ['month_year_week', 'winning_trade']
return winning_trades
def plot_trade_details(trade_detail, trades_df):
if trade_detail == "mech calls":
# this is to filter out the data before 2023-09-01
trades_filtered = trades_df[trades_df["creation_timestamp"] >"2023-09-01"]
trades_filtered = trades_filtered.groupby("month_year_week")["num_mech_calls"].quantile([0.25, 0.5, 0.75]).unstack()
trades_filtered.columns = trades_filtered.columns.astype(str)
trades_filtered.reset_index(inplace=True)
trades_filtered.columns = [
"month_year_week",
"25th_percentile",
"50th_percentile",
"75th_percentile"
]
# reformat the data as percentile, date, value
trades_filtered = trades_filtered.melt(id_vars=["month_year_week"], var_name="percentile", value_name="mech_calls")
return gr.LinePlot(
value=trades_filtered,
x="month_year_week",
y="mech_calls",
color="percentile",
show_label=True,
interactive=True,
show_actions_button=True,
tooltip=["month_year_week", "percentile", "mech_calls"]
)
if trade_detail == "collateral amount":
trades_filtered = trades_df[trades_df["creation_timestamp"] >"2023-09-01"]
trades_filtered = trades_filtered.groupby("month_year_week")["collateral_amount"].quantile([0.25, 0.5, 0.75]).unstack()
trades_filtered.columns = trades_filtered.columns.astype(str)
trades_filtered.reset_index(inplace=True)
trades_filtered.columns = [
"month_year_week",
"25th_percentile",
"50th_percentile",
"75th_percentile"
]
# reformat the data as percentile, date, value
trades_filtered = trades_filtered.melt(id_vars=["month_year_week"], var_name="percentile", value_name="collateral_amount")
return gr.LinePlot(
value=trades_filtered,
x="month_year_week",
y="collateral_amount",
color="percentile",
show_label=True,
interactive=True,
show_actions_button=True,
tooltip=["month_year_week", "percentile", "collateral_amount"]
)
if trade_detail == "earnings":
trades_filtered = trades_df[trades_df["creation_timestamp"] >"2023-09-01"]
trades_filtered = trades_filtered.groupby("month_year_week")["earnings"].quantile([0.25, 0.5, 0.75]).unstack()
trades_filtered.columns = trades_filtered.columns.astype(str)
trades_filtered.reset_index(inplace=True)
trades_filtered.columns = [
"month_year_week",
"25th_percentile",
"50th_percentile",
"75th_percentile"
]
# reformat the data as percentile, date, value
trades_filtered = trades_filtered.melt(id_vars=["month_year_week"], var_name="percentile", value_name="earnings")
return gr.LinePlot(
value=trades_filtered,
x="month_year_week",
y="earnings",
color="percentile",
show_label=True,
interactive=True,
show_actions_button=True,
tooltip=["month_year_week", "percentile", "earnings"]
)
if trade_detail == "net earnings":
trades_filtered = trades_df[trades_df["creation_timestamp"] >"2023-09-01"]
trades_filtered = trades_filtered.groupby("month_year_week")["net_earnings"].quantile([0.25, 0.5, 0.75]).unstack()
trades_filtered.columns = trades_filtered.columns.astype(str)
trades_filtered.reset_index(inplace=True)
trades_filtered.columns = [
"month_year_week",
"25th_percentile",
"50th_percentile",
"75th_percentile"
]
# reformat the data as percentile, date, value
trades_filtered = trades_filtered.melt(id_vars=["month_year_week"], var_name="percentile", value_name="net_earnings")
return gr.LinePlot(
value=trades_filtered,
x="month_year_week",
y="net_earnings",
color="percentile",
show_label=True,
interactive=True,
show_actions_button=True,
tooltip=["month_year_week", "percentile", "net_earnings"]
)
if trade_detail == "ROI":
trades_filtered = trades_df[trades_df["creation_timestamp"] >"2023-09-01"]
trades_filtered = trades_filtered.groupby("month_year_week")["roi"].quantile([0.25, 0.5, 0.75]).unstack()
trades_filtered.columns = trades_filtered.columns.astype(str)
trades_filtered.reset_index(inplace=True)
trades_filtered.columns = [
"month_year_week",
"25th_percentile",
"50th_percentile",
"75th_percentile"
]
# reformat the data as percentile, date, value
trades_filtered = trades_filtered.melt(id_vars=["month_year_week"], var_name="percentile", value_name="ROI")
return gr.LinePlot(
value=trades_filtered,
x="month_year_week",
y="ROI",
color="percentile",
show_label=True,
interactive=True,
show_actions_button=True,
tooltip=["month_year_week", "percentile", "ROI"]
)
def plot_trades_by_week(trades_df):
return gr.BarPlot(
value=trades_df,
x="month_year_week",
y="trades",
show_label=True,
interactive=True,
show_actions_button=True,
tooltip=["month_year_week", "trades"]
)
def plot_winning_trades_by_week(trades_df):
return gr.BarPlot(
value=trades_df,
x="month_year_week",
y="winning_trade",
show_label=True,
interactive=True,
show_actions_button=True,
tooltip=["month_year_week", "winning_trade"]
)
|