File size: 7,075 Bytes
120d6b7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
import gradio as gr
import pandas as pd


def prepare_trades(trades_df):
    trades_df['creation_timestamp'] = pd.to_datetime(trades_df['creation_timestamp'])
    trades_df['month_year'] = trades_df['creation_timestamp'].dt.to_period('M').astype(str)
    trades_df['month_year_week'] = trades_df['creation_timestamp'].dt.to_period('W').astype(str)
    trades_df['winning_trade'] = trades_df['winning_trade'].astype(int)
    return trades_df


def get_overall_trades(trades_df):
    trades_count = trades_df.groupby('month_year_week').size().reset_index()
    trades_count.columns = trades_count.columns.astype(str)
    trades_count.rename(columns={'0': 'trades'}, inplace=True)
    return trades_count

def get_overall_winning_trades(trades_df):
    winning_trades = trades_df.groupby(['month_year_week'])['winning_trade'].sum() / trades_df.groupby(['month_year_week'])['winning_trade'].count() * 100
    # winning_trades is a series, give it a dataframe
    winning_trades = winning_trades.reset_index()
    winning_trades.columns = winning_trades.columns.astype(str)
    winning_trades.columns = ['month_year_week', 'winning_trade']
    return winning_trades

def plot_trade_details(trade_detail, trades_df):
    if trade_detail == "mech calls":
        # this is to filter out the data before 2023-09-01
        trades_filtered = trades_df[trades_df["creation_timestamp"] >"2023-09-01"]
        trades_filtered = trades_filtered.groupby("month_year_week")["num_mech_calls"].quantile([0.25, 0.5, 0.75]).unstack()
        trades_filtered.columns = trades_filtered.columns.astype(str)
        trades_filtered.reset_index(inplace=True)
        trades_filtered.columns = [
            "month_year_week",
            "25th_percentile",
            "50th_percentile",
            "75th_percentile"
        ]
        # reformat the data as percentile, date, value
        trades_filtered = trades_filtered.melt(id_vars=["month_year_week"], var_name="percentile", value_name="mech_calls")

        return gr.LinePlot(
            value=trades_filtered,
            x="month_year_week",
            y="mech_calls",
            color="percentile",
            show_label=True,
            interactive=True,
            show_actions_button=True,
            tooltip=["month_year_week", "percentile", "mech_calls"]
        )
    
    if trade_detail == "collateral amount":
        trades_filtered = trades_df[trades_df["creation_timestamp"] >"2023-09-01"]
        trades_filtered = trades_filtered.groupby("month_year_week")["collateral_amount"].quantile([0.25, 0.5, 0.75]).unstack()
        trades_filtered.columns = trades_filtered.columns.astype(str)
        trades_filtered.reset_index(inplace=True)
        trades_filtered.columns = [
            "month_year_week",
            "25th_percentile",
            "50th_percentile",
            "75th_percentile"
        ]
        # reformat the data as percentile, date, value
        trades_filtered = trades_filtered.melt(id_vars=["month_year_week"], var_name="percentile", value_name="collateral_amount")

        return gr.LinePlot(
            value=trades_filtered,
            x="month_year_week",
            y="collateral_amount",
            color="percentile",
            show_label=True,
            interactive=True,
            show_actions_button=True,
            tooltip=["month_year_week", "percentile", "collateral_amount"]
        )

    if trade_detail == "earnings":
        trades_filtered = trades_df[trades_df["creation_timestamp"] >"2023-09-01"]
        trades_filtered = trades_filtered.groupby("month_year_week")["earnings"].quantile([0.25, 0.5, 0.75]).unstack()
        trades_filtered.columns = trades_filtered.columns.astype(str)
        trades_filtered.reset_index(inplace=True)
        trades_filtered.columns = [
            "month_year_week",
            "25th_percentile",
            "50th_percentile",
            "75th_percentile"
        ]
        # reformat the data as percentile, date, value
        trades_filtered = trades_filtered.melt(id_vars=["month_year_week"], var_name="percentile", value_name="earnings")

        return gr.LinePlot(
            value=trades_filtered,
            x="month_year_week",
            y="earnings",
            color="percentile",
            show_label=True,
            interactive=True,
            show_actions_button=True,
            tooltip=["month_year_week", "percentile", "earnings"]
        )
    
    if trade_detail == "net earnings":
        trades_filtered = trades_df[trades_df["creation_timestamp"] >"2023-09-01"]
        trades_filtered = trades_filtered.groupby("month_year_week")["net_earnings"].quantile([0.25, 0.5, 0.75]).unstack()
        trades_filtered.columns = trades_filtered.columns.astype(str)
        trades_filtered.reset_index(inplace=True)
        trades_filtered.columns = [
            "month_year_week",
            "25th_percentile",
            "50th_percentile",
            "75th_percentile"
        ]
        # reformat the data as percentile, date, value
        trades_filtered = trades_filtered.melt(id_vars=["month_year_week"], var_name="percentile", value_name="net_earnings")

        return gr.LinePlot(
            value=trades_filtered,
            x="month_year_week",
            y="net_earnings",
            color="percentile",
            show_label=True,
            interactive=True,
            show_actions_button=True,
            tooltip=["month_year_week", "percentile", "net_earnings"]
        )        
    
    if trade_detail == "ROI":
        trades_filtered = trades_df[trades_df["creation_timestamp"] >"2023-09-01"]
        trades_filtered = trades_filtered.groupby("month_year_week")["roi"].quantile([0.25, 0.5, 0.75]).unstack()
        trades_filtered.columns = trades_filtered.columns.astype(str)
        trades_filtered.reset_index(inplace=True)
        trades_filtered.columns = [
            "month_year_week",
            "25th_percentile",
            "50th_percentile",
            "75th_percentile"
        ]
        # reformat the data as percentile, date, value
        trades_filtered = trades_filtered.melt(id_vars=["month_year_week"], var_name="percentile", value_name="ROI")

        return gr.LinePlot(
            value=trades_filtered,
            x="month_year_week",
            y="ROI",
            color="percentile",
            show_label=True,
            interactive=True,
            show_actions_button=True,
            tooltip=["month_year_week", "percentile", "ROI"]
        )    
    
def plot_trades_by_week(trades_df):
    return gr.BarPlot(
        value=trades_df,
        x="month_year_week",
        y="trades",
        show_label=True,
        interactive=True,
        show_actions_button=True,
        tooltip=["month_year_week", "trades"]
    )

def plot_winning_trades_by_week(trades_df):
    return gr.BarPlot(
        value=trades_df,
        x="month_year_week",
        y="winning_trade",
        show_label=True,
        interactive=True,
        show_actions_button=True,
        tooltip=["month_year_week", "winning_trade"]
    )